6,999 research outputs found

    Neural Adaptive Backstepping Control of a Robotic Manipulator With Prescribed Performance Constraint

    Full text link
    IEEE This paper presents an adaptive neural network (NN) control of a two-degree-of-freedom manipulator driven by an electrohydraulic actuator. To restrict the system output in a prescribed performance constraint, a weighted performance function is designed to guarantee the dynamic and steady tracking errors of joint angle in a required accuracy. Then, a radial-basis-function NN is constructed to train the unknown model dynamics of a manipulator by traditional backstepping control (TBC) and obtain the preliminary estimated model, which can replace the preknown dynamics in the backstepping iteration. Furthermore, an adaptive estimation law is adopted to self-tune every trained-node weight, and the estimated model is online optimized to enhance the robustness of the NN controller. The effectiveness of the proposed control is verified by comparative simulation and experimental results with Proportional-integral-derivative and TBC methods

    Identification and control for heart rate regulation during treadmill exercise

    Full text link
    This paper proposes a novel integrated approach for the identification and control of Hammerstein systems to achieve desired heart rate profile tracking performance for an automated treadmill system. For the identification of Hammerstein systems, the pseudorandom binary sequence input is employed to decouple the identification of dynamic linear part from input nonlinearity. The powerful ε-insensitivity support vector regression method is adopted to obtain sparse representations of the inverse of static nonlinearity in order to obtain an approximate linear model of the Hammerstein system. An H ∞ controller is designed for the approximated linear model to achieve robust tracking performance. This new approach is successfully applied to the design of a computer-controlled treadmill system for the regulation of heart rate during treadmill exercise. Minimizing deviations of heart rate from a preset profile is achieved by controlling the speed of the treadmill. Both conventional proportional-integral-derivative (PID) control and the proposed approaches have been employed for the controller design. The proposed algorithm achieves much better heart rate tracking performance. © 2007 IEEE

    The effect of magnesium on the local structure and initial dissolution rate of simplified UK Magnox waste glasses

    Get PDF
    A series of simplified glasses were prepared to mimic the United Kingdom’'s Magnox radioactive waste glasses and determine the separate effect of the presence of Mg on the glass structure and the initial dissolution rate. These glasses had an alkaline earth (Ca/Mg) content of 6.5 mol% and relative ratios of Si, B and Na similar to 25 wt% waste loaded Magnox waste glass simulant. Each simplified glass had similar macroscopic properties, differing only in Ca/Mg ratio. 25Mg magic angle spinning nuclear magnetic resonance (MASNMR) spectra of the simplified Mg endmember (MgEM) glass (with no Ca) and the full-component simulant glass were similar, consistent with the similar Mg local environments in both glasses. 11B MASNMR spectra of the series of simplified glasses showed a systematic increase in the amount of three-coordinated boron ([3]B) with increasing amounts of Mg. A clear change in the charge balancing of four-coordinated boron ([4]B) by Mg compared with Ca is observed. However, 11B NMR measurements of the leached material showed that the additional [3]B was not preferentially leached from the Mg containing samples. Despite the structural changes in the glass induced by Ca/Mg substitution, initial dissolution rates (r0) remained invariant, within error, with Ca/Mg ratio. This indicates that the poorer aqueous durability of Mg-containing Magnox waste glass measured experimentally in long-term leaching experiments, compared with SON68 glass containing Ca, is not caused by a primary structural effect in the glass.R. Guo acknowledges the EPSRC and the University of Cambridge for an International Doctoral Scholarship. A portion of this work was funded by Radioactive Waste Management Limited (C.T. Brigden, S.W. Swanton and I. Farnan). The UK 850 MHz solid-state NMR Facility used in this research was funded by EPSRC and BBSRC (contract reference PR140003), as well as the University of Warwick including via part funding through Birmingham Science City Advanced Materials Projects 1 and 2 supported by Advantage West Midlands (AWM) and the European Regional Development Fund (ERDF). Collaborative assistance from the 850 MHz Facility Manager (Dinu Iuga, University of Warwick) is acknowledged

    Simultaneous removal of phosphorus and nitrogen from sewage using a novel combo system of fluidized bed reactor-membrane bioreactor (FBR-MBR)

    Full text link
    A FBR-MBR combo system was designed as a novel approach for simultaneous phosphorus and nitrogen removal from sewage. The combo system was evaluated more than 7months under variable pH (7.5-9.5), hydraulic retention times (HRT=2-10h), intermittent aeration cycles (IAC) (on/off=60/60-15/45min) and sludge retention times (SRT=10-60d). Prior recovery of phosphorus as struvite in the FBR enhanced nitrogen and COD removal efficiency in MBR. Under optimum operating conditions (pH=9, HRT=6h and IAC=45/15min), PO43--P, NH4+-N and COD removal efficiencies were 92.6±4.2, 98.7±1.2 and 99.3±0.5%, respectively. Stable mixed liquor suspended solid concentration (3.0-5.0g/L); enhanced nitrification-denitrification activity (78-92%) and reduced transmembrane pressure were also achieved. Compared to soluble microbial products, extracellular polymeric substances (EPS) showed strong correlation with fast membrane fouling. Among EPS components, carbohydrate rather than protein was associated with membrane fouling. Except HRT, all parameters considered (pH, IAC, SRT) showed a significant effect on removal efficiency. © 2013 Elsevier Ltd

    Water extract of Rheum officinale Baill. induces apoptosis in human lung adenocarcinoma A549 and human breast cancer MCF-7 cell lines

    Get PDF
    Author name used in this publication: De-Jian GuoAuthor name used in this publication: Peter Hoi-Fu Yu2009-2010 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Performance Analysis of a Claw Pole PM Motor

    Full text link
    This paper presents the performance analysis of a three-phase three-stack permanent magnet (PM) claw pole motor by using an improved phase variable model, which has been developed for accurate and efficient performance simulation of PM brushless dc motors. The improved model can take into account the effect of magnetic saturation and rotor position dependence of key parameters including back electromagnetic force, winding inductance, cogging torque and core loss, which are obtained from time-stepping nonlinear magnetic field finite element analysis (FEA). The presented model has been implemented in Simulink environment and employed to simulate the dynamic and steady-state performance of the three-phase three-stack PM claw pole motor with soft magnetic composite stator. Parameter computation and performance simulation are validated by experiments on the motor prototype

    Microalgae biomass from swine wastewater and its conversion to bioenergy

    Full text link
    © 2018 Elsevier Ltd Ever-increasing swine wastewater (SW) has become a serious environmental concern. High levels of nutrients and toxic contaminants in SW significantly impact on the ecosystem and public health. On the other hand, swine wastewater is considered as valuable water and nutrient source for microalgae cultivation. The potential for converting the nutrients from SW into valuable biomass and then generating bioenergy from it has drawn increasing attention. For this reason, this review comprehensively discussed the biomass production, SW treatment efficiencies, and bioenergy generation potentials through cultivating microalgae in SW. Microalgae species grow well in SW with large amounts of biomass being produced, despite the impact of various parameters (e.g., nutrients and toxicants levels, cultivation conditions, and bacteria in SW). Pollutants in SW can effectively be removed by harvesting microalgae from SW, and the harvested microalgae biomass elicits high potential for conversion to valuable bioenergy

    EEG-based emotion classification using innovative features and combined SVM and HMM classifier

    Full text link
    © 2017 IEEE. Emotion classification is one of the state-of-the-art topics in biomedical signal research, and yet a significant portion remains unknown. This paper offers a novel approach with a combined classifier to recognise human emotion states based on electroencephalogram (EEG) signal. The objective is to achieve high accuracy using the combined classifier designed, which categorises the extracted features calculated from time domain features and Discrete Wavelet Transform (DWT). Two innovative designs are involved in this project: a novel variable is established as a new feature and a combined SVM and HMM classifier is developed. The result shows that the joined features raise the accuracy by 5% on valence axis and 1.5% on arousal axis. The combined classifier can improve the accuracy by 3% comparing with SVM classifier. One of the important applications for high accuracy emotion classification system is offering a powerful tool for psychologists to diagnose emotion related mental diseases and the system developed in this project has the potential to serve such purpose

    Effects of C/N ratio on the performance of a hybrid sponge-assisted aerobic moving bed-anaerobic granular membrane bioreactor for municipal wastewater treatment

    Full text link
    © 2017 Elsevier Ltd This study aimed to evaluate the impact of C/N ratio on the performance of a hybrid sponge-assisted aerobic moving bed-anaerobic granular membrane bioreactor (SAAMB-AnGMBR) in municipal wastewater treatment. The results showed that organic removal efficiencies were above 94% at all C/N conditions. Nutrient removal was over 91% at C/N ratio of 100/5 but was negatively affected when decreasing C/N ratio to 100/10. At lower C/N ratio (100/10), more noticeable membrane fouling was caused by aggravated cake formation and pore clogging, and accumulation of extracellular polymeric substances (EPS) in the mixed liquor and sludge cake as a result of deteriorated granular quality. Foulant analysis suggested significant difference existed in the foulant organic compositions under different C/N ratios, and humic substances were dominant when the fastest fouling rate was observed. The performance of the hybrid system was found to recover when gradually increasing C/N ratio from 100/10 to 100/5

    The classification for 'equilibrium triad' sensory loss based on sEMG signals of calf muscles

    Full text link
    © 2017 IEEE. Surface Electromyography (sEMG) has been commonly applied for analysing the electrical activities of skeletal muscles. The sensory system of maintaining posture balance includes vision, proprioception and vestibular senses. In this work, an attempt is made to classify whether the body is missing one of the sense during balance control by using sEMG signals. A trial of combination with different features and muscles is also developed. The results demonstrate that the classification accuracy between vision loss and the normal condition is higher than the one between vestibular sense loss and normal condition. When using different features and muscles, the impact on classification results is also different. The outcomes of this study could aid the development of sEMG based classification for the function of sensory systems during human balance movement
    corecore