8 research outputs found

    A review of a quarter century of International Workshops on Seismic Anisotropy in the crust (0IWSA–12IWSA)

    Full text link

    A review of a quarter century of International Workshops on seismic anisotropy in the crust (01WSA-121WSA)

    No full text
    In 25 years, the presence of azimuthally varying seismic anisotropy throughout the Earth’s crust has progressed from general denial to universal acceptance, so that many international geophysical meetings now have sessions on seismic anisotropy. Over this period, the proceedings of the biennial series of International Workshops in Seismic Anisotropy (IWSAs) have captured many of the notable advances in the theory, calculation, observation and interpretation of particularly shear-wave splitting (seismic birefringence) in the Earth’s crust. Shear-wave splitting is the almost-infallible indicator of seismic anisotropy along the ray path. This paper reviews 13 IWSA meetings (0IWSA–12IWSA) as a catalogue of 25 years of progress in seismic anisotropy. The evidence now suggests that shear-wave splitting monitors the low-level pre-fracturing deformation of the stress-aligned fluid-saturated microcracks pervading almost all in situ rocks in the crust. Shear-wave splitting indicates that microcracks are so closely spaced they are critical systems with all the universality, calculability, predictability, “butterfly wing’s” sensitivity, and deterministic chaos that that implies. This leads to a New Geophysics, where low-level deformation can be monitored with shear-wave splitting, future behaviour calculated–predicted with the anisotropic poro-elastic model of rock evolution, and in some circumstances even potentially controlled by feedback. We anticipate the New Geophysics will greatly invigorate IWSA
    corecore