9 research outputs found

    Rice biofortification: breeding and genomic approaches for genetic enhancement of grain zinc and iron contents

    Get PDF
    Rice is a highly consumed staple cereal cultivated predominantly in Asian countries, which share 90% of global rice production. Rice is a primary calorie provider for more than 3.5 billion people across the world. Preference and consumption of polished rice have increased manifold, which resulted in the loss of inherent nutrition. The prevalence of micronutrient deficiencies (Zn and Fe) are major human health challenges in the 21st century. Biofortification of staples is a sustainable approach to alleviating malnutrition. Globally, significant progress has been made in rice for enhancing grain Zn, Fe, and protein. To date, 37 biofortified Fe, Zn, Protein and Provitamin A rich rice varieties are available for commercial cultivation (16 from India and 21 from the rest of the world; Fe > 10 mg/kg, Zn > 24 mg/kg, protein > 10% in polished rice as India target while Zn > 28 mg/kg in polished rice as international target). However, understanding the micronutrient genetics, mechanisms of uptake, translocation, and bioavailability are the prime areas that need to be strengthened. The successful development of these lines through integrated-genomic technologies can accelerate deployment and scaling in future breeding programs to address the key challenges of malnutrition and hidden hunger

    Trace elements in glucometabolic disorders: an update

    Get PDF
    Many trace elements, among which metals, are indispensable for proper functioning of a myriad of biochemical reactions, more particularly as enzyme cofactors. This is particularly true for the vast set of processes involved in regulation of glucose homeostasis, being it in glucose metabolism itself or in hormonal control, especially insulin. The role and importance of trace elements such as chromium, zinc, selenium, lithium and vanadium are much less evident and subjected to chronic debate. This review updates our actual knowledge concerning these five trace elements. A careful survey of the literature shows that while theoretical postulates from some key roles of these elements had led to real hopes for therapy of insulin resistance and diabetes, the limited experience based on available data indicates that beneficial effects and use of most of them are subjected to caution, given the narrow window between safe and unsafe doses. Clear therapeutic benefit in these pathologies is presently doubtful but some data indicate that these metals may have a clinical interest in patients presenting deficiencies in individual metal levels. The same holds true for an association of some trace elements such as chromium or zinc with oral antidiabetics. However, this area is essentially unexplored in adequate clinical trials, which are worth being performed

    Studies on mechanical behavior of surface modified sisal fibre - Epoxy composites

    No full text
    Studies were carried out on sisal-epoxy composites prepared with different fibre weight fractions (precisely determined by a novel thermogravimetric analyser technique) containing optimally treated (18% NaOH) sisal fibres, using an improvised fabrication approach. An enhancement of 110% in the optimally treated fibre tensile property resulted in improvement of composite mechanical properties (compression, tensile, interlaminar shear stress and energy absorption) ranging between 18% and 158%. A novel fibre treatment effectiveness parameter was introduced, to quantify the translation efficiency of the enhanced fibre tensile property into the composite tensile property. Scanning electron microscopic analysis of fractured composite specimens are also presented and discussed

    Ultimate lateral load of a pile in soft clay under cyclic loading

    No full text
    In this paper, the ultimate lateral resistance of a long, flexible, unrestrained vertical pile in soft clay is computed under cyclic loading condition using p-y curves. A new method for the construction of p-y curves is proposed. The comparison of calculated results of the proposed method with the field test results reported by Matlock (1970) shows a good agreement. An iterative analysis is employed with secant modulus approach using a matrix method known as moment area method developed by Sawant and Dewaikar (1994). The load-ground line displacement relationship is obtained for different load eccentricities, number of cycles and pile diameters using the proposed p-y curves. Ultimate lateral load is computed from the log-log plot of ground line displacement and applied load and the effect of number of load cycles on the ultimate lateral load resistance is investigated for various pile diameters and load eccentricities.© IACMA

    The Chemical and Biological Properties of Propolis

    No full text
    The term propolis comes from two Greek words, pro (which means for or in defence of) and polis (which means the city); thus, propolis means in defence of the city or beehive. Propolis is a sticky resinous substance, which is gathered from buds and the bark of trees. It is also known as "bee glue" as bees use it to cover surfaces, seal holes and close gaps in their hives, thus providing a sterile environment that protects them from microbes and spore-producing organisms, including fungi and molds. It can be considered to be a potent chemical weapon against bacteria, viruses, and other pathogenic microorganisms that may invade the bee colony. Also, bees use propolis as an embalming substance, to mummify invaders such as other insects, that have been killed and are too heavy to remove from the colony. Thus, propolis is important for bee health but it also has activity against many human diseases. It is a powerful anti-oxidant and can modulate the activity of reactive oxygen species within the human body. The most studied aspect of propolis is its anti-bacterial activity, which is almost always present at a moderate to high level depending on the exact type of propolis. It is in general more active against Gram positive than Gram negative bacteria, but activity against Gram negative bacteria has been observed. Propolis has been found to be active against a range of viruses and also is almost always active against protozoa such as Tryanosoma brucei and Leishmania donovani. Propolis also shows activity against cardiovascular diseases and diabetes and has immunomodulatory effects. Anti-cancer activity has also been observed. In summary, propolis is remarkable for its range of biological activities and for the variety of its chemical composition. It may be of great importance both to bees and humans

    In Vitro Regeneration of ICP 8863 Pigeon Pea (Cajanus cajan (L.) Millsp.) Variety using Leaf Petiole and Cotyledonary Node Explants and Assessment of their Genetic Stability by RAPD Analysis

    No full text

    Probiotics in fish and shellfish culture: immunomodulatory and ecophysiological responses

    No full text
    corecore