15 research outputs found

    Crystallographic, Optical, and Electronic Properties of the Cs2AgBi1–xInxBr6 Double Perovskite: Understanding the Fundamental Photovoltaic Efficiency Challenges

    Get PDF
    We present a crystallographic and optoelectronic study of the double perovskite Cs2AgBi1–xInxBr6. From structural characterization we determine that the indium cation shrinks the lattice and shifts the cubic-to-tetragonal phase transition point to lower temperatures. The absorption onset is shifted to shorter wavelengths upon increasing the indium content, leading to wider band gaps, which we rationalize through first-principles band structure calculations. Despite the unfavorable band gap shift, we observe an enhancement in the steady-state photoluminescence intensity, and n-i-p photovoltaic devices present short-circuit current greater than that of neat Cs2AgBiBr6 devices. In order to evaluate the prospects of this material as a solar absorber, we combine accurate absorption measurements with thermodynamic modeling and identify the fundamental limitations of this system. Provided radiative efficiency can be increased and the choice of charge extraction layers are specifically improved, this material could prove to be a useful wide band gap solar absorber

    Simple technique for determining the refractive index of phase-change materials using near-infrared reflectometry

    Get PDF
    This is the final version. Available on open access from the Optical Society via the DOI in this recordPhase-change materials, such as the well-known ternary alloy Ge2Sb2Te5, are essential to many types of photonic devices, from re-writeable optical disk memories to more recent developments such as phase-change displays, reconfigurable optical metasurfaces, and integrated phase-change photonic devices and systems. The successful design and development of such applications and devices requires accurate knowledge of the complex refractive index of the phase-change material being used. To this end, it is common practice to rely on published experimental refractive index data. However, published values can vary quite significantly for notionally the same composition, no doubt due to variations in fabrication/deposition processes. Rather than rely on published data, a more reliable approach to index determination is to measure the properties of as-fabricated films, and this is usually carried out using specialized and dedicated ellipsometric equipment. In this paper, we propose a simple and effective alternative to ellipsometry, based on spectroscopic reflectance measurements of Fabry–Perot phase-change nanocavities. We describe this alternative approach in detail, apply it to measurement of the complex index of the archetypal phase-change materials Ge2Sb2Te5 and GeTe, and compare the results to those obtained using conventional ellipsometry, where we find good agreement.Engineering and Physical Sciences Research Council (EPSRC)European Union Horizon 2020Science and Technology Facilities Council (STFC

    Sub-nanometre resolution imaging of polymer-fullerene photovoltaic blends using energy-filtered scanning electron microscopy

    Get PDF
    The resolution capability of the scanning electron microscope has increased immensely in recent years, and is now within the sub-nanometre range, at least for inorganic materials. An equivalent advance has not yet been achieved for imaging the morphologies of nanostructured organic materials, such as organic photovoltaic blends. Here we show that energy-selective secondary electron detection can be used to obtain high-contrast, material-specific images of an organic photovoltaic blend. We also find that we can differentiate mixed phases from pure material phases in our data. The lateral resolution demonstrated is twice that previously reported from secondary electron imaging. Our results suggest that our energy-filtered scanning electron microscopy approach will be able to make major inroads into the understanding of complex, nano-structured organic materials

    Direct observation and evolution of electronic coupling between organic semiconductors

    No full text
    The electronic wave functions of an atom or molecule are affected by its interactions with its environment. These interactions dictate electronic and optical processes at interfaces, and is especially relevant in the case of thin film optoelectronic devices such as organic solar cells. In these devices, charge transport and interfaces between multiple layers occur along the thickness or vertical direction, and thus such electronic interactions between different molecules—same or different—are crucial in determining the device properties. Here, we introduce an in situ spectroscopic ellipsometry data analysis method called differential analysis in real time (DART) with the ability to directly probe electronic coupling due to intermolecular interactions along the thickness direction using vacuum-deposited organic semiconductor thin films as a model system. The analysis, which does not require any model fitting, reveals direct observations of electronic coupling between frontier orbitals under optical excitations leading to delocalization of the corresponding electronic wave functions with thickness or, equivalently, number of molecules away from the interface in C60 and MeO-TPD deposited on an insulating substrate ( Si O 2 ) . Applying the same methodology for C60 deposited on phthalocyanine thin films, the analyses shows strong, anomalous features—in comparison to C60 deposited on Si O 2 —of the electronic wave functions corresponding to specific excitation energies in C60 and phthalocyanines. Translation of such interactions in terms of dielectric constants reveals plasmonic type resonance absorptions resulting from oscillations of the excited state wave functions between the two materials across the interface. Finally, reproducibility, angstrom-level sensitivity, and simplicity of the method are highlighted showcasing its applicability for studying electronic coupling between any vapor-deposited material systems where real-time measurements during thin film growth are possible

    Consolidation of the optoelectronic properties of CH3NH3PbBr3 perovskite single crystals.

    No full text
    Ultralow trap densities, exceptional optical and electronic properties have been reported for lead halide perovskites single crystals; however, ambiguities in basic properties, such as the band gap, and the electronic defect densities in the bulk and at the surface prevail. Here, we synthesize single crystals of methylammonium lead bromide (CH3NH3PbBr3), characterise the optical absorption and photoluminescence and show that the optical properties of single crystals are almost identical to those of polycrystalline thin films. We observe significantly longer lifetimes and show that carrier diffusion plays a substantial role in the photoluminescence decay. Contrary to many reports, we determine that the trap density in CH3NH3PbBr3 perovskite single crystals is 1015 cm-3, only one order of magnitude lower than in the thin films. Our enhanced understanding of optical properties and recombination processes elucidates ambiguities in earlier reports, and highlights the discrepancies in the estimation of trap densities from electronic and optical methods.Metal halide perovskites for optoelectronic devices have been extensively studied in two forms: single-crystals or polycrystalline thin films. Using spectroscopic approaches, Wenger et al. show that polycrystalline thin films possess similar optoelectronic properties to single crystals

    Assessing the photovoltaic quality of vacuum-thermal evaporated organic semiconductor blends

    No full text
    Vacuum-thermal evaporation (VTE) is a highly relevant fabrication route for organic solar cells (OSCs), especially on an industrial scale as proven by the commercialization of organic light emitting diode-based displays. While OSC performance is reported for a range of VTE-deposited molecules, a comprehensive assessment of donor:acceptor blend properties with respect to their photovoltaic performance is scarce. Here, the organic thin films and solar cells of three select systems are fabricated and ellipsometry, external quantum efficiency with high dynamic range, as well as OTRACE are measured to quantify absorption, voltage losses, and charge carrier mobility. These parameters are key to explain OSC performance and will help to rationalize the performance of other material systems reported in literature as the authors’ methodology is applicable beyond VTE systems. Furthermore, it can help to judge the prospects of new molecules in general. The authors find large differences in the measured values and find that today's VTE OSCs can reach high extinction coefficients, but only moderate mobility and voltage loss compared to their solution-processed counterparts. What needs to be improved for VTE OSCs is outlined to again catch up with their solution-processed counterparts in terms of power conversion efficiency

    Consolidation of the optoelectronic properties of CH3NH3PbBr3 perovskite single crystals.

    No full text
    Ultralow trap densities, exceptional optical and electronic properties have been reported for lead halide perovskites single crystals; however, ambiguities in basic properties, such as the band gap, and the electronic defect densities in the bulk and at the surface prevail. Here, we synthesize single crystals of methylammonium lead bromide (CH3NH3PbBr3), characterise the optical absorption and photoluminescence and show that the optical properties of single crystals are almost identical to those of polycrystalline thin films. We observe significantly longer lifetimes and show that carrier diffusion plays a substantial role in the photoluminescence decay. Contrary to many reports, we determine that the trap density in CH3NH3PbBr3 perovskite single crystals is 1015 cm-3, only one order of magnitude lower than in the thin films. Our enhanced understanding of optical properties and recombination processes elucidates ambiguities in earlier reports, and highlights the discrepancies in the estimation of trap densities from electronic and optical methods.Metal halide perovskites for optoelectronic devices have been extensively studied in two forms: single-crystals or polycrystalline thin films. Using spectroscopic approaches, Wenger et al. show that polycrystalline thin films possess similar optoelectronic properties to single crystals

    Efficiency enhancement of small molecule organic solar cells using hexapropyltruxene as an interface layer

    No full text
    The quenching of excitons in organic solar cells can play a significant role in limiting their power conversion efficiency (PCE). In this article, we investigate the effect of a thin layer of hexapropyltruxene inserted at the interface between the electron donor boron subphthalocyanine chloride (SubPc) and its underlying hole contact in planar heterojunction solar cells. We find that a 3.8 nm hexapropyltruxene interlayer between the molybdenum oxide (MoOx) hole contact and SubPc is sufficient to improve PCE in SubPc/C60 fullerene solar cells from 2.6% to 3.0%, a ∼20% performance improvement. While the absorption stays roughly the same, the comparison of external and internal quantum efficiencies reveals a significant increase in SubPc's contribution to the current for light with wavelengths between 520 and 600 nm. Microstructure and surface morphology assessed with in situ Grazing-Incidence Wide-Angle X-Ray Scattering (GIWAXS) and Atomic Force Microscopy (AFM), are evaluated alongside in situ spectroscopic ellipsometry, and photoluminescence measurements. The microstructural investigations demonstrate changes to the surface and bulk of SubPc grown atop a hexapropyltruxene interlayer indicating that the latter acts as a template layer in a similar way as MoOx. However, the improvement in PCE is found to be mainly via reduced exciton quenching at the MoOx contact with the insertion of the hexapropyltruxene layer

    Simple technique for determining the refractive index of phase-change materials using near-infrared reflectometry

    No full text
    Phase-change materials, such as the well-known ternary alloy Ge2Sb2Te5, are essential to many types of photonic devices, from re-writeable optical disk memories to more recent developments such as phase-change displays, reconfigurable optical metasurfaces, and integrated phase-change photonic devices and systems. The successful design and development of such applications and devices requires accurate knowledge of the complex refractive index of the phase-change material being used. To this end, it is common practice to rely on published experimental refractive index data. However, published values can vary quite significantly for notionally the same composition, no doubt due to variations in fabrication/deposition processes. Rather than rely on published data, a more reliable approach to index determination is to measure the properties of as-fabricated films, and this is usually carried out using specialized and dedicated ellipsometric equipment. In this paper, we propose a simple and effective alternative to ellipsometry, based on spectroscopic reflectance measurements of Fabry&ndash;Perot phase-change nanocavities. We describe this alternative approach in detail, apply it to measurement of the complex index of the archetypal phase-change materials Ge2Sb2Te5&nbsp;and GeTe, and compare the results to those obtained using conventional ellipsometry, where we find good agreement.</p
    corecore