40 research outputs found

    Differential family and peer environmental factors are related to severity and comorbidity in childresn with ADHD

    Get PDF
    Contains fulltext : 70260.pdf (publisher's version ) (Closed access)Behavioral genetic studies imply that salient environmental influences operate within families, making siblings in a family different rather than similar. This study is the first one to examine differential sibling experiences (as measured with the Sibling Inventory of Differential Experience) and its effect on behavioral outcomes within ADHD families. Subjects were 45 Dutch ADHD probands and their unaffected siblings (n = 45) aged 10-18 years. ADHD probands and their unaffected siblings reported differences in sibling interaction, parental treatment, and peer characteristics. These nonshared environmental influences were related to both the severity of ADHD symptoms as well as to comorbid problem behaviors. These findings suggest that environmental influences that operate within ADHD families appear relevant to the severity of problem behaviors of ADHD children and their siblings

    Selective deployment of transcription factor paralogs with submaximal strength facilitates gene regulation in the immune system

    Get PDF
    In multicellular organisms, duplicated genes can diverge through tissue-specific gene expression patterns, as exemplified by highly regulated expression of Runx transcription factor paralogs with apparent functional redundancy. Here we asked what cell type-specific biologies might be supported by the selective expression of Runx paralogs during Langerhans cell and inducible regulatory T cell differentiation. We uncovered functional non-equivalence between Runx paralogs. Selective expression of native paralogs allowed integration of transcription factor activity with extrinsic signals, while non-native paralogs enforced differentiation even in the absence of exogenous inducers. DNA-binding affinity was controlled by divergent amino acids within the otherwise highly conserved RUNT domain, and evolutionary reconstruction suggested convergence of RUNT domain residues towards sub-maximal strength. Hence, the selective expression of gene duplicates in specialized cell types can synergize with the acquisition of functional differences to enable appropriate gene expression, lineage choice and differentiation in the mammalian immune system

    Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii.

    No full text
    Species of malaria parasite that infect rodents have long been used as models for malaria disease research. Here we report the whole-genome shotgun sequence of one species, Plasmodium yoelii yoelii, and comparative studies with the genome of the human malaria parasite Plasmodium falciparum clone 3D7. A synteny map of 2,212 P. y. yoelii contiguous DNA sequences (contigs) aligned to 14 P. falciparum chromosomes reveals marked conservation of gene synteny within the body of each chromosome. Of about 5,300 P. falciparum genes, more than 3,300 P. y. yoelii orthologues of predominantly metabolic function were identified. Over 800 copies of a variant antigen gene located in subtelomeric regions were found. This is the first genome sequence of a model eukaryotic parasite, and it provides insight into the use of such systems in the modelling of Plasmodium biology and disease
    corecore