5,980 research outputs found

    The mitochondrial phylogeny of an ancient lineage of ray-finned fishes (Polypteridae) with implications for the evolution of body elongation, pelvic fin loss, and craniofacial morphology in Osteichthyes

    Get PDF
    BACKGROUND: The family Polypteridae, commonly known as "bichirs", is a lineage that diverged early in the evolutionary history of Actinopterygii (ray-finned fish), but has been the subject of far less evolutionary study than other members of that clade. Uncovering patterns of morphological change within Polypteridae provides an important opportunity to evaluate if the mechanisms underlying morphological evolution are shared among actinoptyerygians, and in fact, perhaps the entire osteichthyan (bony fish and tetrapods) tree of life. However, the greatest impediment to elucidating these patterns is the lack of a well-resolved, highly-supported phylogenetic tree of Polypteridae. In fact, the interrelationships of polypterid species have never been subject to molecular phylogenetic analysis. Here, we infer the first molecular phylogeny of bichirs, including all 12 recognized species and multiple subspecies using Bayesian analyses of 16S and cyt-b mtDNA. We use this mitochondrial phylogeny, ancestral state reconstruction, and geometric morphometrics to test whether patterns of morphological evolution, including the evolution of body elongation, pelvic fin reduction, and craniofacial morphology, are shared throughout the osteichthyan tree of life. RESULTS: Our molecular phylogeny reveals 1) a basal divergence between Erpetoichthys and Polypterus, 2) polyphyly of P. endlicheri and P. palmas, and thus 3) the current taxonomy of Polypteridae masks its underlying genetic diversity. Ancestral state reconstructions suggest that pelvic fins were lost independently in Erpetoichthys, and unambiguously estimate multiple independent derivations of body elongation and shortening. Our mitochondrial phylogeny suggested species that have lower jaw protrusion and up-righted orbit are closely related to each other, indicating a single transformation of craniofacial morphology. CONCLUSION: The mitochondrial phylogeny of polypterid fish provides a strongly-supported phylogenetic framework for future comparative evolutionary, physiological, ecological, and genetic analyses. Indeed, ancestral reconstruction and geometric morphometric analyses revealed that the patterns of morphological evolution in Polypteridae are similar to those seen in other osteichthyans, thus implying the underlying genetic and developmental mechanisms responsible for those patterns were established early in the evolutionary history of Osteichthyes. We propose developmental and genetic mechanisms to be tested under the light of this new phylogenetic framework

    "Spin-Flop" Transition and Anisotropic Magnetoresistance in Pr_{1.3-x}La_{0.7}Ce_{x}CuO_{4}: Unexpectedly Strong Spin-Charge Coupling in Electron-Doped Cuprates

    Full text link
    We use transport and neutron-scattering measurements to show that a magnetic-field-induced transition from noncollinear to collinear spin arrangement in adjacent CuO_{2} planes of lightly electron-doped Pr_{1.3-x}La_{0.7}Ce_{x}CuO_{4} (x=0.01) crystals affects significantly both the in-plane and out-of-plane resistivity. In the high-field collinear state, the magnetoresistance (MR) does not saturate, but exhibits an intriguing four-fold-symmetric angular dependence, oscillating from being positive at B//[100] to being negative at B//[110]. The observed MR of more than 30% at low temperatures induced by a modest modification of the spin structure indicates an unexpectedly strong spin-charge coupling in electron-doped cuprates.Comment: 4 pages, 5 figures, accepted for publication in Phys. Rev. Let

    High temporal resolution arterial spin labeling MRI with whole-brain coverage by combining time-encoding with Look-Locker and simultaneous multi-slice imaging

    Get PDF
    PurposeThe goal of this study was to achieve high temporal resolution, multi‐time point pseudo‐continuous arterial spin labeling (pCASL) MRI in a time‐efficient manner, while maintaining whole‐brain coverage.MethodsA Hadamard 8‐matrix was used to dynamically encode the pCASL labeling train, thereby providing the first source of temporal information. The second method for obtaining dynamic arterial spin labeling (ASL) signal consisted of a Look‐Locker (LL) readout of 4 phases that are acquired with a flip‐angle sweep to maintain constant sensitivity over the phases. To obtain whole‐brain coverage in the short LL interval, 4 slices were excited simultaneously by multi‐banded radiofrequency pulses. After subtraction according to the Hadamard scheme, the ASL signal was corrected for the use of the flip‐angle sweep and background suppression pulses. The BASIL toolkit of the Oxford Centre for FMRIB was used to quantify the ASL signal.ResultsBy combining a time‐encoded pCASL labeling scheme with an LL readout and simultaneous multi‐slice acquisition, 28 time points of 16 slices with a 75‐ or 150‐ms time resolution were acquired in a total scan time of 10 minutes 20 seconds, from which cerebral blood flow (CBF) maps, arterial transit time maps, and arterial blood volume could be determined.ConclusionWhole‐brain ASL images were acquired with a 75‐ms time resolution for the angiography and 150‐ms resolution for the perfusion phase by combining the proposed techniques. Reducing the total scan time to 1 minute 18 seconds still resulted in reasonable CBF maps, which demonstrates the feasibility of this approach for practical studies on brain hemodynamics

    Quantum fluctuations in high field magnetization of 2D square lattice J1-J2 antiferromagnets

    Full text link
    The J1-J2 square lattice Heisenberg model with spin S=1/2 has three phases with long-range magnetic order and two unconventionally ordered phases depending on the ratio of exchange constants. It describes a number of recently found layered vanadium oxide compounds. A simple means of investigating the ground state is the study of the magnetization curve and high-field susceptibility. We discuss these quantities by using the spin-wave theory and the exact diagonalization in the whole J1-J2 plane. We compare both results and find good overall agreement in the sectors of the phase diagram with magnetic order. Close to the disordered regions the magnetization curve shows strong deviations from the classical linear behaviour caused by large quantum fluctuations and spin-wave approximation breaks down. On the FM side (J1<0) where one approaches the quantum gapless spin nematic ground state this region is surprisingly large. We find that inclusion of second order spin-wave corrections does not lead to fundamental improvement. Quantum corrections to the tilting angle of the ordered moments are also calculated. They may have both signs, contrary to the always negative first order quantum corrections to the magnetization. Finally we investigate the effect of the interlayer coupling and find that the quasi-2D picture remains valid up to |J_\perp/J1| ~ 0.3.Comment: 13 pages, 6figure

    MuSR studies of RE(O,F)FeAs (RE = La, Nd, Ce) and LaOFeP systems: possible incommensurate/stripe magnetism and superfluid density

    Full text link
    Muon spin relaxation (MuSR) measurements in iron oxy-pnictide systems have revealed: (1) commensurate long-range order in undoped LaOFeAs; (2) Bessel function line shape in La(O0.97F0.03)FeAs which indicates possible incommensurate or stripe magnetism; (3) anomalous weak magnetism existing in superconducting LaOFeP, Ce(O0.84F0.16)FeAs, and Nd(O0.88F0.12)FeAs but absent in superconducting La(O0.92F0.08)FeAs; and (4) scaling of superfluid density and Tc in the Ce, La, and Nd-FeAs superconductors following a nearly linear relationship found in cuprates.Comment: 4 pages, 5 figures (color

    2-Amino-6-methyl­pyridinium 4-nitro­benzoate

    Get PDF
    In the crystal structure of the title salt, C6H9N2 +·C7H4NO4 −, the cations and anions are linked by N—H⋯O hydrogen bonds, forming chains running parallel to the b axis

    Charge Segregation and Antiferromagnetism in High-Tc Superconductors

    Full text link
    Local antiferromagnetism coexists with superconductivity in the cuprates. Charge segregation provides a way to reconcile these properties. Direct evidence for modulated spin and charge densities has been found in neutron and X-ray scattering studies of Nd-doped La(2-x)Sr(x)CuO(4). Here we discuss the nature of the modulation, and present some new results for a Zn-doped sample. Some of the open questions concerning the connections between segregation and superconductivity are described.Comment: 9 pp using elsart.sty, 3 eps figures included with psfig.sty, for Proc. of ISSP-7, to be published in J. Phys. Chem. Solid
    corecore