4,101 research outputs found
USB environment measurements based on full-scale static engine ground tests
Flow turning parameters, static pressures, surface temperatures, surface fluctuating pressures and acceleration levels were measured in the environment of a full-scale upper surface blowing (USB) propulsive lift test configuration. The test components included a flightworthy CF6-50D engine, nacelle, and USB flap assembly utilized in conjunction with ground verification testing of the USAF YC-14 Advanced Medium STOL Transport propulsion system. Results, based on a preliminary analysis of the data, generally show reasonable agreement with predicted levels based on model data. However, additional detailed analysis is required to confirm the preliminary evaluation, to help delineate certain discrepancies with model data, and to establish a basis for future flight test comparisons
Relaxation versus collision times in the cosmological radiative era
We consider the Lema\^{\i}tre-Tolman-Bondi metric with an inhomogeneous viscous fluid source satisfying the equation of state of an interactive mixture of radiation and matter. Assuming conditions prior to the decoupling era, we apply Extended Irreversible Thermodynamcs (EIT) to this mixture. Using the full transport equation of EIT we show that the relaxation time of shear viscosity can be several orders of magnitude larger than the Thomson collision time between photons and electrons. A comparison with the ``truncated'' transport equation for these models reveals that the latter cannot describe properly the decoupling of matter and radiatio
Towards a physical interpretation for the Stephani Universes
A physicaly reasonable interpretation is provided for the perfect fluid,
sphericaly symmetric, conformally flat ``Stephani Universes''. The free
parameters of this class of exact solutions are determined so that the ideal
gas relation is identicaly fulfiled, while the full equation of state
of a classical monatomic ideal gas and a matter-radiation mixture holds up to a
good approximation in a near dust, matter dominated regime. Only the models
having spacelike slices with positive curvature admit a regular evolution
domain that avoids an unphysical singularity. In the matter dominated regime
these models are dynamicaly and observationaly indistinguishable from
``standard'' FLRW cosmology with a dust source.Comment: 17 pages, 2 figures, LaTeX with revtex style, submitted to General
Relativity and Gravitatio
Evolution of radial profiles in regular Lemaitre-Tolman-Bondi dust models
We undertake a comprehensive and rigorous analytic study of the evolution of
radial profiles of covariant scalars in regular Lemaitre-Tolman-Bondi dust
models. We consider specifically the phenomenon of "profile inversions" in
which an initial clump profile of density, spatial curvature or the expansion
scalar, might evolve into a void profile (and vice versa). Previous work in the
literature on models with density void profiles and/or allowing for density
profile inversions is given full generalization, with some erroneous results
corrected. We prove rigorously that if an evolution without shell crossings is
assumed, then only the 'clump to void' inversion can occur in density profiles,
and only in hyperbolic models or regions with negative spatial curvature. The
profiles of spatial curvature follow similar patterns as those of the density,
with 'clump to void' inversions only possible for hyperbolic models or regions.
However, profiles of the expansion scalar are less restrictive, with profile
inversions necessarily taking place in elliptic models. We also examine radial
profiles in special LTB configurations: closed elliptic models, models with a
simultaneous big bang singularity, as well as a locally collapsing elliptic
region surrounded by an expanding hyperbolic background. The general analytic
statements that we obtain allow for setting up the right initial conditions to
construct fully regular LTB models with any specific qualitative requirements
for the profiles of all scalars and their time evolution. The results presented
can be very useful in guiding future numerical work on these models and in
revising previous analytic work on all their applications.Comment: Final version to appear in Classical and Quantum Gravity. Readers
eager to know the results and implications without having to go through the
technical detail are recommended to go directly to the summary and discussion
in the final section (section 11). Typos have been corrected and an important
reference has been adde
On the Thermodynamics of Simple Non-Isentropic Perfect Fluids in General Relativity
We examine the consistency of the thermodynamics of irrotational and
non-isentropic perfect fluids complying with matter conservation by looking at
the integrability conditions of the Gibbs-Duhem relation. We show that the
latter is always integrable for fluids of the following types: (a) static, (b)
isentropic (admits a barotropic equation of state), (c) the source of a
spacetime for which , where is the dimension of the orbit of the
isometry group. This consistency scheme is tested also in two large classes of
known exact solutions for which , in general: perfect fluid Szekeres
solutions (classes I and II). In none of these cases, the Gibbs-Duhem relation
is integrable, in general, though specific particular cases of Szekeres class
II (all complying with ) are identified for which the integrability of
this relation can be achieved. We show that Szekeres class I solutions satisfy
the integrability conditions only in two trivial cases, namely the spherically
symmetric limiting case and the Friedman-Roberson-Walker (FRW) cosmology.
Explicit forms of the state variables and equations of state linking them are
given explicitly and discussed in relation to the FRW limits of the solutions.
We show that fixing free parameters in these solutions by a formal
identification with FRW parameters leads, in all cases examined, to unphysical
temperature evolution laws, quite unrelated to those of their FRW limiting
cosmologies.Comment: 29 pages, Plain.Te
Ideal gas sources for the Lemaitre-Tolman-Bondi metrics
New exact solutions emerge by replacing the dust source of the
Lem\^aitre-Tolman-Bondi metrics with a viscous fluid satisfying the monatomic
gas equation of state. The solutions have a consistent thermodynamical
interpretation. The most general transport equation of Extended Irreversible
Thermodynamics is satisfied, with phenomenological coefficients bearing a close
resemblance to those characterizing a non relativistic Maxwell-Bolzmann gas.Comment: 7 pages, Plain TeX with IOP macros, important corrections to previous
version, 3 figures (to appear in Classical and Quantum Gravity, June 1998
- …