89 research outputs found

    Determination of gamma-ray transmission factors of WO3-TeO2-B2O3 glasses using MCNPX Monte Carlo code for shielding and protection purposes

    Get PDF
    The aim of this study is to assess the individual gamma-ray transmission factors (TFs) and some fundamental gamma-ray attenuation properties of several types of glasses based on WO3-TeO2-B2O3 glasses system. MCNPX (version 2.7.0) is used for the calculation of TFs. Other critical parameters are determined using the Phy-X/PSD program. To determine the TFs of studied glasses, several medical radioisotopes are determined along with their characteristic gamma-ray energies. The superior values for the investigated parameters are found in glass sample S6. Furthermore, the exposure build-up factor and energy absorption build-up factor values for glass sample S6 were the lowest. S6 glass sample with the chemical composition 0.03833B + 0.26075O + 0.11591Zn + 0.52783Te + 0.05718W and a density of 3.3579 g/cm3 is found to have exceptional gamma-ray attenuation qualities, according to our findings. It can be concluded that the prospective attributes of WO3-doped glass systems and associated glass compositions would be beneficial for scientific community in terms of providing a clearer view for some advanced applications of these glass types. © 2022 the author(s), published by De Gruyter.Ministry of Education in Saudi Arabia, (RI-44-0004)Universitatea 'Dunărea de Jos' Galați, UDJG, (RF 3621/2021)Funding text 1: Funding information: The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number RI-44-0004.Funding text 2: Author contributions: Ghada ALMisned: writing, calculations, revisionDuygu Sen Baykal: calculations, writing, illustrationsGokhan Kilic: calculations, writingG. Susoy: calculations, writing, revisionHesham M.H. Zakaly: calculations, writingAntoaneta Ene: calculations, writing (The work of Antoaneta Ene and the APC were supported by Dunarea de Jos University of Galati, Romania through the grant no. RF 3621/2021.)Huseyin Ozan Tekin: writing, calculation, supervision, revision

    Physical and nuclear shielding properties of newly synthesized magnesium oxide and zinc oxide nanoparticles

    Full text link
    Magnesium oxide (MgO) and Zinc oxide (ZnO) nanoparticles (NPs) have been successfully synthesized by solid–solid reaction method. The structural properties of ZnO and MgO NPs were studied using X-ray diffraction (XRD) and scanning electron microscopy (SEM). XRD results indicated a formation of pure MgO and ZnO NPs. The mean diameter values of the agglomerated particles were around to be 70 and 50 nm for MgO and ZnO NPs, respectively using SEM analysis. Further, a wide-range of nuclear radiation shielding investigation for gamma-ray and fast neutrons have been studied for Magnesium oxide (MgO) and Zinc oxide (ZnO) samples. FLUKA and Microshield codes have been employed for the determination of mass attenuation coefficients (μm) and transmission factors (TF) of Magnesium oxide (MgO) and Zinc oxide (ZnO) samples. The calculated values for mass attenuation coefficients (μm) were utilized to determine other vital shielding properties against gamma-ray radiation. Moreover, the results showed that Zinc oxide (ZnO) nanoparticles with the lowest diameter value as 50 nm had a satisfactory capacity in nuclear radiation shielding. © 2020 Korean Nuclear Societ

    Low-energy electric dipole response in 120Sn

    Get PDF
    The electric dipole strength in 120Sn has been extracted from proton inelastic scattering experiments at E_p = 295 MeV and at forward angles including 0 degree. Below neutron threshoild it differs from the results of a 120Sn(gamma,gamma') experiment and peaks at an excitation energy of 8.3 MeV. The total strength corresponds to 2.3(2)% of the energy-weighted sum rule and is more than three times larger than what is observed with the (gamma,gamma') reaction. This implies a strong fragmentation of the E1 strength and/or small ground state branching ratios of the excited 1- states.Comment: 7 pages, 6 figure

    Dipole polarizability of 120Sn and nuclear energy density functionals

    Full text link
    The electric dipole strength distribution in 120Sn between 5 and 22 MeV has been determined at RCNP Osaka from a polarization transfer analysis of proton inelastic scattering at E_0 = 295 MeV and forward angles including 0{\deg}. Combined with photoabsorption data an electric dipole polarizability \alpha_D(120Sn) = 8.93(36) fm^3 is extracted. The dipole polarizability as isovector observable par excellence carries direct information on the nuclear symmetry energy and its density dependence. The correlation of the new value with the well established \alpha_D(208Pb) serves as a test of its prediction by nuclear energy density functionals (EDFs). Models based on modern Skyrme interactions describe the data fairly well while most calculations based on relativistic Hamiltonians cannot.Comment: 6 pages, 4 figure

    A Detailed Investigation on Highly Dense CuZr Bulk Metallic Glasses for Shielding Purposes

    Full text link
    Gamma-ray shielding properties of eight different metallic glasses based on CuxZr100-x: x = 35 (Cu35Zr65) - 70 (Cu70Zr30) were determined using Monte Carlo simulations and Phy-X/PSD software. A typical gamma-ray transmission setup has been modeled in MCNPX Monte Carlo code. The general trend of the linear attenuation coefficients (μ) was reported as (μ)Cu35Zr65 (MFP,HVL)Cu40Zr60 > (MFP,HVL)Cu45Zr55 > (MFP,HVL)Cu50Zr50 > (MFP,HVL)Cu55Zr45 > (MFP,HVL)Cu60Zr40 > (MFP,HVL)Cu65Zr35 > (MFP,HVL)Cu70Zr30 for all photon energy range. The Cu70Zr30 sample showed maximum values of both the effective conductivity (C eff) and effective electron density (N eff). In addition, the Cu70Zr30 sample has minimum exposure and energy absorption buildup factor (EBF and EABF) values at all studied gamma-ray energies. The results revealed that the Cu70Zr30 sample has superior attenuation properties among all studied samples. © 2022 Huseyin Ozan Tekin et al., published by De Gruyter.This work was performed under Princess Nourah bint Abdulrahman University Researchers Supporting Project Number (PNURSP2022R149), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. The authors express their sincere gratitude to Princess Nourah bint Abdulrahman University

    Multiple Assessments on the Gamma-Ray Protection Properties of Niobium-Doped Borotellurite Glasses: A Wide Range Investigation Using Monte Carlo Simulations

    Full text link
    In this study, the monotonic effect of Ta2O5 and ZrO2 in some selected borotellurite glasses was investigated in terms of their impact on gamma-ray-shielding competencies. Accordingly, three niobium-reinforced borotellurite glasses (S1: 75TeO2 + 15B2O3 + 10Nb2O5, S2: 75TeO2 + 15B2O3 + 9Nb2O5 + 1Ta2O5, and S3: 75TeO2 + 15B2O3 + 8Nb2O5 + 1Ta2O5 + 1ZrO2) were modelled in the general-purpose MCNPX Monte Carlo code. They have been defined as an attenuator sample between the point isotropic gamma-ray source and the detector in terms of determining their attenuation coefficients. To verify the MC results, attenuation coefficients were then compared with the Phy-X/PSD program data. Our findings clearly demonstrate that although some behavioral changes occurred in the shielding qualities, modest improvements occurred in the attenuation properties depending on the modifier variation and its magnitude. However, the replacement of 2% moles of Nb2O5 with 1% mole of Ta2O5 and 1% mole of ZrO2 provided significant improvements in both glass density and attenuation properties against gamma rays. Finally, the HVL values of the S3 sample were compared with some glass- and concrete-shielding materials and the S3 sample was reported for its outstanding properties. As a consequence of this investigation, it can be concluded that the indicated type of additive to be added to borotellurite glasses will provide some advantages, particularly when used in radiation fields, by increasing the shielding qualities moderately. © 2022 H. O. Tekin et al

    Transmission Factor (TF) Behavior of Bi2O3–TeO2–Na2O–TiO2–ZnO Glass System: A Monte Carlo Simulation Study

    Full text link
    The main objective of the present work was to assess the gamma radiation shielding competencies and gamma radiation transmission factors (TFs) for some tellurite glasses in the form of Bi2O3–TeO2–Na2O–TiO2–ZnO. MCNPX general-purpose Monte Carlo code (version 2.6.0) was utilized for the determination of TF values at various well-known radioisotope energies for different glass thicknesses from 0.5 cm to 3 cm. Moreover, some important gamma ray shielding properties were also determined in the 0.015–15 MeV energy range. The results show that glass densities were improved from 5.401 g/cm3 to 6.138 g·cm3 as a function of Bi2O3 increment in the glass composition. A S5 glass sample with the maximum Bi2O3 additive was reported with superior gamma ray shielding properties among the studied glasses. It can be concluded that Bi2O3 can be used as a functional tool in terms of improving glass density and, accordingly, gamma ray shielding attenuation properties of tellurite glasses, where the role Bi2O3 is also critical for other material properties, such as structural, optical, and mechanical. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.This work was performed under Princess Nourah bint Abdulrahman University Researchers Supporting Project Number (PNURSP2022R149), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. The authors express their sincere gratitude to Princess Nourah bint Abdulrahman University

    Heavy metal oxide (HMO) glasses as an effective member of glass shield family: A comprehensive characterization on gamma ray shielding properties of various structures

    Full text link
    Using advanced Monte Carlo simulation techniques and theoretical methodologies, a thorough investigation on the gamma-ray shielding properties of several heavy metal oxide glasses were performed. The general-purpose Monte Carlo code MCNPX (version 2.7.0) was used to simulate gamma-ray transmission to determine fundamental attenuation coefficients. The acquired findings were compared to Phy-X/PSD to confirm that the outputs were consistent. Additionally, other gamma-ray shielding parameters were computed and studied throughout a broad photon energy range of 0.015 MeV–15 MeV. From A to F glass samples, a sharp density increase from 5.99 g/cm3 to 8.9 g/cm3 was found. As a result, the F sample was found to have the highest linear attenuation coefficients. Our results indicate that increasing the amount of Bi reinforcement improved the material's overall gamma-ray attenuation properties. The F sample with the highest Bi reinforcement in its glass structure was subsequently shown to have superior gamma-ray shielding characteristics. Finally, we compared the F sample's half-value layer values to those of other commercial glass shields, various concretes, and other glass shields investigated in the literature. As a consequence of the benchmarking procedure, it has been determined that the F sample has better shielding capabilities than other shielding materials. It can be concluded that heavy metal oxide glasses offer apparent benefits in terms of more efficiently attenuating incoming gamma-rays. Additionally, it can be concluded that applying high Bi to heavy metal oxide glasses is a beneficial strategy for improving the gamma-ray attenuation capabilities of heavy metal oxide glasses. © 2022 The Author(s)Princess Nourah Bint Abdulrahman University, PNUAuthors express their sincere gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project
    corecore