6,676 research outputs found

    Frequency and time profiles of metric wave isolated Type I solar noise storm bursts at high spectral and temporal resolution

    Full text link
    Type I noise storms constitute a sizeable faction of the active-Sun radio emission component. Observations of isolated instances of such bursts, in the swept-frequency-mode at metric wavelengths, have remained sparse, with several unfilled regions in the frequency coverage. Dynamic spectra of the burst radiation, in the 30 - 130 MHz band, obtained from the recently commissioned digital High Resolution Spectrograph (HRS) at the Gauribidanur Radio Observatory, on account of the superior frequency and time resolution, have unravelled in explicit detail the temporal and spectral profiles of isolated bursts. Apart from presenting details on their fundamental emission features, the time and frequency profile symmetry, with reference to custom-specific Gaussian distributions, has been chosen as the nodal criterion to statistically explain the state of the source regions in the vicinity of magnetic reconnections, the latent excitation agent that contributes to plasma wave energetics, and the quenching phenomenon that causes damping of the burst emission.Comment: 9 pages 7 black and white / grey-scale figures (inclusive of 3 composite). MNRAS - accepte

    Localization and Fluctuations in Quantum Kicked Rotors

    Full text link
    We address the issue of fluctuations, about an exponential lineshape, in a pair of one-dimensional kicked quantum systems exhibiting dynamical localization. An exact renormalization scheme establishes the fractal character of the fluctuations and provides a new method to compute the localization length in terms of the fluctuations. In the case of a linear rotor, the fluctuations are independent of the kicking parameter kk and exhibit self-similarity for certain values of the quasienergy. For given kk, the asymptotic localization length is a good characteristic of the localized lineshapes for all quasienergies. This is in stark contrast to the quadratic rotor, where the fluctuations depend upon the strength of the kicking and exhibit local "resonances". These resonances result in strong deviations of the localization length from the asymptotic value. The consequences are particularly pronounced when considering the time evolution of a packet made up of several quasienergy states.Comment: REVTEV Document. 9 pages, 4 figures submitted to PR

    Optical Response of Grating-Coupler-Induced Intersubband Resonances: The Role of Wood's Anomalies

    Full text link
    Grating-coupler-induced collective intersubband transitions in a quasi-two-dimensional electron system are investigated both experimentally and theoretically. Far-infrared transmission experiments are performed on samples containing a quasi-two-dimensional electron gas quantum-confined in a parabolic quantum well. For rectangular shaped grating couplers of different periods we observe a strong dependence of the transmission line shape and peak height on the period of the grating, i.e. on the wave vector transfer from the diffracted beams to the collective intersubband resonance. It is shown that the line shape transforms with increasing grating period from a Lorentzian into a strongly asymmetric line shape. Theoretically, we treat the problem by using the transfer-matrix method of local optics and apply the modal-expansion method to calculate the influence of the grating. The optically uniaxial quasi-two-dimensional electron gas is described in the long-wavelength limit of the random-phase approximation by a local dielectric tensor, which includes size quantization effects. Our theory reproduces excellently the experimental line shapes. The deformation of the transmission line shapes we explain by the occurrence of both types of Wood's anomalies.Comment: 28 pages, 7 figures. Physical Review B , in pres

    Robotic Partial Nephrectomy for a Peripheral Renal Tumor

    Get PDF
    Partial nephrectomy (PN) is the preferred surgical treatment for T1 renal tumors whenever technically feasible. When properly performed, it allows preservation of nephron mass without compromising oncologic outcomes. This reduces the postoperative risk of renal insufficiency, which translates into better overall survival for the patients. PN can be technically challenging, because it requires the surgeon to complete the tasks of tumor excision, hemostasis and renorrhaphy, all within an ischemic time of preferably below 30 minutes. The surgeon needs to avoid violating the tumor margins while leaving behind the maximal parenchymal volume at the same time. Variations such as zero ischemia, early unclamping, and selective clamping have been developed in an attempt to reduce the negative impact of renal ischemia, but inevitably add to the steep learning curves for any surgeon. Being able to appreciate the fine details of each surgical step in PN is the fundamental basis to the success of this surgery. The use of the robotic assistance allows a good combination of the minimally invasive nature of laparoscopic surgery and the surgical exposure and dexterity of open surgery. It also allows the use of adjuncts such as concurrent ultrasound assessment of the renal mass and intraoperative fluorescence to aid the identification of tumor margins, all with a simple hand switch at the console. Robot-assisted laparoscopic PN is now the most commonly performed type of PN in the United States and is gaining acceptance on the global scale. In this video, we illustrate the steps of robot-assisted laparoscopic PN and highlight the technical key points for success

    Foreword

    Get PDF
    corecore