6,676 research outputs found
Frequency and time profiles of metric wave isolated Type I solar noise storm bursts at high spectral and temporal resolution
Type I noise storms constitute a sizeable faction of the active-Sun radio
emission component. Observations of isolated instances of such bursts, in the
swept-frequency-mode at metric wavelengths, have remained sparse, with several
unfilled regions in the frequency coverage. Dynamic spectra of the burst
radiation, in the 30 - 130 MHz band, obtained from the recently commissioned
digital High Resolution Spectrograph (HRS) at the Gauribidanur Radio
Observatory, on account of the superior frequency and time resolution, have
unravelled in explicit detail the temporal and spectral profiles of isolated
bursts. Apart from presenting details on their fundamental emission features,
the time and frequency profile symmetry, with reference to custom-specific
Gaussian distributions, has been chosen as the nodal criterion to statistically
explain the state of the source regions in the vicinity of magnetic
reconnections, the latent excitation agent that contributes to plasma wave
energetics, and the quenching phenomenon that causes damping of the burst
emission.Comment: 9 pages 7 black and white / grey-scale figures (inclusive of 3
composite). MNRAS - accepte
Localization and Fluctuations in Quantum Kicked Rotors
We address the issue of fluctuations, about an exponential lineshape, in a
pair of one-dimensional kicked quantum systems exhibiting dynamical
localization. An exact renormalization scheme establishes the fractal character
of the fluctuations and provides a new method to compute the localization
length in terms of the fluctuations. In the case of a linear rotor, the
fluctuations are independent of the kicking parameter and exhibit
self-similarity for certain values of the quasienergy. For given , the
asymptotic localization length is a good characteristic of the localized
lineshapes for all quasienergies. This is in stark contrast to the quadratic
rotor, where the fluctuations depend upon the strength of the kicking and
exhibit local "resonances". These resonances result in strong deviations of the
localization length from the asymptotic value. The consequences are
particularly pronounced when considering the time evolution of a packet made up
of several quasienergy states.Comment: REVTEV Document. 9 pages, 4 figures submitted to PR
Optical Response of Grating-Coupler-Induced Intersubband Resonances: The Role of Wood's Anomalies
Grating-coupler-induced collective intersubband transitions in a
quasi-two-dimensional electron system are investigated both experimentally and
theoretically. Far-infrared transmission experiments are performed on samples
containing a quasi-two-dimensional electron gas quantum-confined in a parabolic
quantum well. For rectangular shaped grating couplers of different periods we
observe a strong dependence of the transmission line shape and peak height on
the period of the grating, i.e. on the wave vector transfer from the diffracted
beams to the collective intersubband resonance. It is shown that the line shape
transforms with increasing grating period from a Lorentzian into a strongly
asymmetric line shape. Theoretically, we treat the problem by using the
transfer-matrix method of local optics and apply the modal-expansion method to
calculate the influence of the grating. The optically uniaxial
quasi-two-dimensional electron gas is described in the long-wavelength limit of
the random-phase approximation by a local dielectric tensor, which includes
size quantization effects. Our theory reproduces excellently the experimental
line shapes. The deformation of the transmission line shapes we explain by the
occurrence of both types of Wood's anomalies.Comment: 28 pages, 7 figures. Physical Review B , in pres
Robotic Partial Nephrectomy for a Peripheral Renal Tumor
Partial nephrectomy (PN) is the preferred surgical treatment for T1 renal tumors whenever technically feasible. When properly performed, it allows preservation of nephron mass without compromising oncologic outcomes. This reduces the postoperative risk of renal insufficiency, which translates into better overall survival for the patients. PN can be technically challenging, because it requires the surgeon to complete the tasks of tumor excision, hemostasis and renorrhaphy, all within an ischemic time of preferably below 30 minutes. The surgeon needs to avoid violating the tumor margins while leaving behind the maximal parenchymal volume at the same time. Variations such as zero ischemia, early unclamping, and selective clamping have been developed in an attempt to reduce the negative impact of renal ischemia, but inevitably add to the steep learning curves for any surgeon. Being able to appreciate the fine details of each surgical step in PN is the fundamental basis to the success of this surgery. The use of the robotic assistance allows a good combination of the minimally invasive nature of laparoscopic surgery and the surgical exposure and dexterity of open surgery. It also allows the use of adjuncts such as concurrent ultrasound assessment of the renal mass and intraoperative fluorescence to aid the identification of tumor margins, all with a simple hand switch at the console. Robot-assisted laparoscopic PN is now the most commonly performed type of PN in the United States and is gaining acceptance on the global scale. In this video, we illustrate the steps of robot-assisted laparoscopic PN and highlight the technical key points for success
- …
