9,773 research outputs found

    Few-atomic-layered hexagonal boron nitride: CVD growth, characterization, and applications

    Get PDF
    © 2017 Two-dimensional (2D) materials have shown outstanding properties that make them the materials of choice for future semiconductor and flexible nanoelectronics. Hexagonal boron nitride nanosheet (BNNS) is one of the most studied 2D materials due to its extraordinary properties and potential applications. The synthesis of large, homogeneous, and few-layered BNNS, however, remains challenging. Among the various synthetic routes, chemical vapour deposition (CVD) is preferred on the grounds of its potential to yield large BNNS with controllable atomic layers and minimal contamination. We thus devote this review to the CVD growth of BNNS, and its characterization and applications. The recent progresses in the CVD growth of BNNS is firstly summarized from the aspects of precursors, substrates, growth mechanisms, and transfer techniques. This review then moves on to the characterization of few-atomic-layered h-BN sheets, covering a variety of microscopic and spectroscopic techniques that have proved useful for assessing the quality of BNNS. The applications of the BNNS are also summarized. This review is expected to instigate new methods and improvements in relation to the CVD growth of BNNS, which has enabled exceptional performance as a key component of nanoscale electronics

    Hexagonal Boron Nitride Nanosheets Grown via Chemical Vapor Deposition for Silver Protection

    Full text link
    © 2019 American Chemical Society. In this study, hexagonal boron nitride nanosheets (h-BNNS) have been grown on polycrystalline silver substrates via chemical vapor deposition (CVD) using ammonia borane as a precursor. The h-BNNS are of few-atomic-layer thickness and form continuous coverage over the whole Ag substrate. The atomically thin coating poses negligible interference to the reflectivity in the UV-visible range. The nanosheet coating also proves very effective in protecting Ag foil chemically. In contrast to bare Ag foil, the coated foil displayed only minor decolorization under high concentration of H2S. The study indicates that h-BNNS can be a promising protective coating for Ag based items such as jewelry or mirrors used in astronomical telescopes

    Cycling performance of Mn2O3 porous nanocubes and hollow spheres for lithium-ion batteries

    Get PDF
    Post presentationMn2O3 is a promising anode material for lithium ion battery. Two different kinds of structures of Mn2O3 were synthesized via solution processes, the Mn2O3 porous cubes and hollow spheres. Scanning electron microscope images and transmission electron microscopy images clearly show the structures. Electrochemical impedance spectroscopy and cyclic voltammetry measurements were used to characterize their electrochemical properties. As anode materials for lithium ion batteries, Mn2O3 porous cubes performed similarly as Mn2O3 hollow spheres. Both samples started with high initial capacities (1583.2 mAh/g and 1550.7 mAh/g) which were reduced to 173.3 mAh/g and 162.0 mAh/g at 100th cycle at a current density of 100 mA/g. The decrease is likely due to morphology destruction the materials in charging and discharging process.published_or_final_versio

    Template-free synthesis of hierarchical hollow V2O5 microspheres with highly stable lithium storage capacity

    Get PDF
    Hollow V2O5 microspheres were successfully synthesized by a solvothermal method and subsequent calcination. The rigid hollow V2O5 cathode prepared in isopropanol solvent exhibited excellent cycling performance and rate capability. Within a voltage window of 2.5 to 4 V, a maximum specific discharge capacity of 128 mA h g−1 was delivered at 1 A g−1. Even after 500 cycles, the capacity retention was 92.2%.published_or_final_versio

    SUMO chain formation is required for response to replication arrest in S. pombe

    Get PDF
    SUMO is a ubiquitin-like protein that is post-translationally attached to one or more lysine residues on target proteins. Despite having only 18% sequence identity with ubiquitin, SUMO contains the conserved betabetaalphabetabetaalphabeta fold present in ubiquitin. However, SUMO differs from ubiquitin in having an extended N-terminus. In S. pombe the N-terminus of SUMO/Pmt3 is significantly longer than those of SUMO in S. cerevisiae, human and Drosophila. Here we investigate the role of this N-terminal region. We have used two dimensional gel electrophoresis to demonstrate that S. pombe SUMO/Pmt3 is phosphorylated, and that this occurs on serine residues at the extreme N-terminus of the protein. Mutation of these residues (in pmt3-1) results in a dramatic reduction in both the levels of high Mr SUMO-containing species and of total SUMO/Pmt3, indicating that phosphorylation of SUMO/Pmt3 is required for its stability. Despite the significant reduction in high Mr SUMO-containing species, pmt3-1 cells do not display an aberrant cell morphology or sensitivity to genotoxins or stress. Additionally, we demonstrate that two lysine residues in the N-terminus of S. pombe SUMO/Pmt3 (K14 and K30) can act as acceptor sites for SUMO chain formation in vitro. Inability to form SUMO chains results in aberrant cell and nuclear morphologies, including stretched and fragmented chromatin. SUMO chain mutants are sensitive to the DNA synthesis inhibitor, hydroxyurea (HU), but not to other genotoxins, such as UV, MMS or CPT. This implies a role for SUMO chains in the response to replication arrest in S. pomb

    Structural insight into SUMO chain recognition and manipulation by the ubiquitin ligase RNF4

    Get PDF
    The small ubiquitin-like modifier (SUMO) can form polymeric chains that are important signals in cellular processes such as meiosis, genome maintenance and stress response. The SUMO-targeted ubiquitin ligase RNF4 engages with SUMO chains on linked substrates and catalyses their ubiquitination, which targets substrates for proteasomal degradation. Here we use a segmental labelling approach combined with solution nuclear magnetic resonance (NMR) spectroscopy and biochemical characterization to reveal how RNF4 manipulates the conformation of the SUMO chain, thereby facilitating optimal delivery of the distal SUMO domain for ubiquitin transfer

    Fixed Effect Estimation of Large T Panel Data Models

    Get PDF
    This article reviews recent advances in fixed effect estimation of panel data models for long panels, where the number of time periods is relatively large. We focus on semiparametric models with unobserved individual and time effects, where the distribution of the outcome variable conditional on covariates and unobserved effects is specified parametrically, while the distribution of the unobserved effects is left unrestricted. Compared to existing reviews on long panels (Arellano and Hahn 2007; a section in Arellano and Bonhomme 2011) we discuss models with both individual and time effects, split-panel Jackknife bias corrections, unbalanced panels, distribution and quantile effects, and other extensions. Understanding and correcting the incidental parameter bias caused by the estimation of many fixed effects is our main focus, and the unifying theme is that the order of this bias is given by the simple formula p/n for all models discussed, with p the number of estimated parameters and n the total sample size.Comment: 40 pages, 1 tabl

    Atomic-scale combination of germanium-zinc nanofibers for structural and electrochemical evolution

    Get PDF
    Alloys are recently receiving considerable attention in the community of rechargeable batteries as possible alternatives to carbonaceous negative electrodes; however, challenges remain for the practical utilization of these materials. Herein, we report the synthesis of germanium-zinc alloy nanofibers through electrospinning and a subsequent calcination step. Evidenced by in situ transmission electron microscopy and electrochemical impedance spectroscopy characterizations, this one-dimensional design possesses unique structures. Both germanium and zinc atoms are homogenously distributed allowing for outstanding electronic conductivity and high available capacity for lithium storage. The as-prepared materials present high rate capability (capacity of similar to 50% at 20 C compared to that at 0.2 C-rate) and cycle retention (73% at 3.0 C-rate) with a retaining capacity of 546 mAh g(-1) even after 1000 cycles. When assembled in a full cell, high energy density can be maintained during 400 cycles, which indicates that the current material has the potential to be used in a large-scale energy storage system

    Membrane Porters of ATP-Binding Cassette Transport Systems Are Polyphyletic

    Get PDF
    The ATP-binding cassette (ABC) superfamily consists of both importers and exporters. These transporters have, by tradition, been classified according to the ATP hydrolyzing constituents, which are monophyletic. The evolutionary origins of the transmembrane porter proteins/domains are not known. Using five distinct computer programs, we here provide convincing statistical data suggesting that the transmembrane domains of ABC exporters are polyphyletic, having arisen at least three times independently. ABC1 porters arose by intragenic triplication of a primordial two-transmembrane segment (TMS)-encoding genetic element, yielding six TMS proteins. ABC2 porters arose by intragenic duplication of a dissimilar primordial three-TMS-encoding genetic element, yielding a distinctive protein family, nonhomologous to the ABC1 proteins. ABC3 porters arose by duplication of a primordial four-TMS-encoding genetic element, yielding either eight- or 10-TMS proteins. We assign each of 48 of the 50 currently recognized families of ABC exporters to one of the three evolutionarily distinct ABC types. Currently available high-resolution structural data for ABC porters are fully consistent with our findings. These results provide guides for future structural and mechanistic studies of these important transport systems
    corecore