7 research outputs found

    Biomarkers of rapid chronic kidney disease progression in type 2 diabetes.

    Get PDF
    Here we evaluated the performance of a large set of serum biomarkers for the prediction of rapid progression of chronic kidney disease (CKD) in patients with type 2 diabetes. We used a case-control design nested within a prospective cohort of patients with baseline eGFR 30-60 ml/min per 1.73 m(2). Within a 3.5-year period of Go-DARTS study patients, 154 had over a 40% eGFR decline and 153 controls maintained over 95% of baseline eGFR. A total of 207 serum biomarkers were measured and logistic regression was used with forward selection to choose a subset that were maximized on top of clinical variables including age, gender, hemoglobin A1c, eGFR, and albuminuria. Nested cross-validation determined the best number of biomarkers to retain and evaluate for predictive performance. Ultimately, 30 biomarkers showed significant associations with rapid progression and adjusted for clinical characteristics. A panel of 14 biomarkers increased the area under the ROC curve from 0.706 (clinical data alone) to 0.868. Biomarkers selected included fibroblast growth factor-21, the symmetric to asymmetric dimethylarginine ratio, β2-microglobulin, C16-acylcarnitine, and kidney injury molecule-1. Use of more extensive clinical data including prebaseline eGFR slope improved prediction but to a lesser extent than biomarkers (area under the ROC curve of 0.793). Thus we identified several novel associations of biomarkers with CKD progression and the utility of a small panel of biomarkers to improve prediction.We acknowledge all the SUMMIT partners (http://www.imi-summit.eu/) for their assistance with this project. This work was funded by the Innovative Medicine Initiative under grant agreement no. IMI/115006 (the SUMMIT consortium) and the Go-DARTS cohort was funded by the Chief Scientists Office Scotland.This is the accepted manuscript of a paper published in Kidney International (Looker et al., Kidney International, 2015 doi: 10.1038/ki.2015.199). The final version is available at http://dx.doi.org/10.1038/ki.2015.19

    Ensemble learning predicts multiple sclerosis disease course in the SUMMIT study.

    No full text
    The rate of disability accumulation varies across multiple sclerosis (MS) patients. Machine learning techniques may offer more powerful means to predict disease course in MS patients. In our study, 724 patients from the Comprehensive Longitudinal Investigation in MS at Brigham and Women's Hospital (CLIMB study) and 400 patients from the EPIC dataset, University of California, San Francisco, were included in the analysis. The primary outcome was an increase in Expanded Disability Status Scale (EDSS) ≥ 1.5 (worsening) or not (non-worsening) at up to 5 years after the baseline visit. Classification models were built using the CLIMB dataset with patients' clinical and MRI longitudinal observations in first 2 years, and further validated using the EPIC dataset. We compared the performance of three popular machine learning algorithms (SVM, Logistic Regression, and Random Forest) and three ensemble learning approaches (XGBoost, LightGBM, and a Meta-learner L). A "threshold" was established to trade-off the performance between the two classes. Predictive features were identified and compared among different models. Machine learning models achieved 0.79 and 0.83 AUC scores for the CLIMB and EPIC datasets, respectively, shortly after disease onset. Ensemble learning methods were more effective and robust compared to standalone algorithms. Two ensemble models, XGBoost and LightGBM were superior to the other four models evaluated in our study. Of variables evaluated, EDSS, Pyramidal Function, and Ambulatory Index were the top common predictors in forecasting the MS disease course. Machine learning techniques, in particular ensemble methods offer increased accuracy for the prediction of MS disease course

    Ensemble learning predicts multiple sclerosis disease course in the SUMMIT study

    No full text
    Abstract The rate of disability accumulation varies across multiple sclerosis (MS) patients. Machine learning techniques may offer more powerful means to predict disease course in MS patients. In our study, 724 patients from the Comprehensive Longitudinal Investigation in MS at Brigham and Women’s Hospital (CLIMB study) and 400 patients from the EPIC dataset, University of California, San Francisco, were included in the analysis. The primary outcome was an increase in Expanded Disability Status Scale (EDSS) ≥ 1.5 (worsening) or not (non-worsening) at up to 5 years after the baseline visit. Classification models were built using the CLIMB dataset with patients’ clinical and MRI longitudinal observations in first 2 years, and further validated using the EPIC dataset. We compared the performance of three popular machine learning algorithms (SVM, Logistic Regression, and Random Forest) and three ensemble learning approaches (XGBoost, LightGBM, and a Meta-learner L). A “threshold” was established to trade-off the performance between the two classes. Predictive features were identified and compared among different models. Machine learning models achieved 0.79 and 0.83 AUC scores for the CLIMB and EPIC datasets, respectively, shortly after disease onset. Ensemble learning methods were more effective and robust compared to standalone algorithms. Two ensemble models, XGBoost and LightGBM were superior to the other four models evaluated in our study. Of variables evaluated, EDSS, Pyramidal Function, and Ambulatory Index were the top common predictors in forecasting the MS disease course. Machine learning techniques, in particular ensemble methods offer increased accuracy for the prediction of MS disease course

    Protein biomarkers for the prediction of cardiovascular disease in type 2 diabetes

    No full text
    Aims/hypothesis We selected the most informative protein biomarkers for the prediction of incident cardiovascular disease (CVD) in people with type 2 diabetes. Methods In this nested case-control study we measured 42 candidate CVD biomarkers in 1,123 incident CVD cases and 1,187 controls with type 2 diabetes selected from five European centres. Combinations of biomarkers were selected using cross-validated logistic regression models. Model prediction was assessed using the area under the receiver operating characteristic curve (AUROC). Results Sixteen biomarkers showed univariate associations with incident CVD. The most predictive subset selected by forward selection methods contained six biomarkers: N-terminal pro-B-type natriuretic peptide (OR 1.69 per 1 SD, 95% CI 1.47, 1.95), high-sensitivity troponin T (OR 1.29, 95% CI 1.11, 1.51), IL-6 (OR 1.13, 95% CI 1.02, 1.25), IL-15 (OR 1.15, 95% CI 1.01, 1.31), apolipoprotein C-III (OR 0.79, 95% CI 0.70, 0.88) and soluble receptor for AGE (OR 0.84, 95% CI 0.76, 0.94). The prediction of CVD beyond clinical covariates improved from an AUROC of 0.66 to 0.72 (AUROC for Framingham Risk Score covariates 0.59). In addition to the biomarkers, the most important clinical covariates for improving prediction beyond the Framingham covariates were estimated GFR, insulin therapy and HbA(1c). Conclusions/interpretation We identified six protein biomarkers that in combination with clinical covariates improved the prediction of our model beyond the Framingham Score covariates. Biomarkers can contribute to improved prediction of CVD in diabetes but clinical data including measures of renal function and diabetes-specific factors not included in the Framingham Risk Score are also needed
    corecore