987 research outputs found

    Experiences Navigating the Pregnancy Care Continuum During the COVID-19 Pandemic

    Get PDF
    Introduction: The COVID-19 pandemic led to unprecedented changes in care delivery across the pregnancy care continuum. Our primary objective with this research was to characterize the range of ways that the early months of the COVID-19 pandemic affected pregnancy, childbirth, and postpartum care experiences. Methods: Pregnant and recently pregnant patients (n = 20) from obstetrics and gynecology clinical sites associated with Massachusetts General Hospital were interviewed about their experiences with prenatal care, childbirth, and postpartum care during the first wave of the COVID-19 pandemic. Interview transcripts were analyzed for emergent themes. Results: This sample included 20 pregnant and postpartum people, including 11 individuals who tested positive for COVID-19 during pregnancy or postpartum and nine with suspected infection. The ways in which COVID-19 or suspected COVID-19 affected experiences of prenatal care, childbirth, and postpartum care were complex and varied. Three themes were identified across narratives of pregnancy, birth, and postpartum care: patient perceptions of diminished access to care, stigma due to COVID-19 infection, and limited capacity of providers to honor patient preferences. Conclusions: A better understanding of pregnant and recently pregnant people's experiences during the early months of the COVID-19 pandemic can inform infection control policies and clinical care delivery practices that are more congruent with the needs and values of pregnant, birthing, and postpartum people as institutions craft responses to future pandemics. Approaches that maximize meaningful access across the pregnancy care continuum, center patients' priorities within adapted care models, and honor patient preferences as much as possible are important aspects of an appropriate response to future waves of COVID-19 and other pandemics

    Pion Content of the Nucleon as seen in the NA51 Drell-Yan experiment

    Get PDF
    In a recent CERN Drell-Yan experiment the NA51 group found a strong asymmetry of uˉ\bar u and dˉ\bar d densities in the proton at x≃0.18x\simeq0.18. We interpret this result as a decisive confirmation of the pion-induced sea in the nucleon.Comment: 10 pages + 3 figures, Preprint KFA-IKP(TH)-1994-14 .tex file. After \enddocument a uu-encodeded Postscript file comprising the figures is appende

    Composite vertices that lead to soft form factors

    Get PDF
    The momentum-space cut-off parameter Λ\Lambda of hadronic vertex functions is studied in this paper. We use a composite model where we can measure the contributions of intermediate particle propagations to Λ\Lambda. We show that in many cases a composite vertex function has a much smaller cut-off than its constituent vertices, particularly when light constituents such as pions are present in the intermediate state. This suggests that composite meson-baryon-baryon vertex functions are rather soft, i.e., they have \Lambda considerably less than 1 GeV. We discuss the origin of this softening of form factors as well as the implications of our findings on the modeling of nuclear reactions.Comment: REVTex, 19 pages, 5 figs(to be provided on request

    Charge asymmetry ratio as a probe of quark flavour couplings of resonant particles at the LHC

    Full text link
    We show how a precise knowledge of parton distribution functions, in particular those of the u and d quarks, can be used to constrain a certain class of New Physics models in which new heavy charged resonances couple to quarks and leptons. We illustrate the method by considering a left-right symmetric model with a W' from a SU(2)_R gauge sector produced in quark-antiquark annihilation and decaying into a charged lepton and a heavy Majorana neutrino. We discuss a number of quark and lepton mixing scenarios, and simulate both signals and backgrounds in order to determine the size of the expected charge asymmetry. We show that various quark-W' mixing scenarios can indeed be constrained by charge asymmetry measurements at the LHC, particularly at 14 TeV centre of mass energy.Comment: 14 pages, 3 figure

    Inclusive Jet Production, Parton Distributions, and the Search for New Physics

    Full text link
    Jet production at the Tevatron probes some of the smallest distance scales currently accessible. A gluon distribution that is enhanced at large x compared to previous determinations provides a better description of the Run 1b jet data from both CDF and D0. However, considerable uncertainty still remains regarding the gluon distribution at high x. In this paper, we examine the effects of this uncertainty, and of the remaining uncertainties in the NLO QCD theory, on jet cross section comparisons to Run 1b data. We also calculate the range of contributions still possible from any new physics. Predictions are also made for the expanded kinematic range expected for the ongoing Run 2 at the Tevatron and for the LHC.Comment: 50 pages, 31 figures, RevTe

    Chiral dynamics and the growth of the nucleon's gluonic transverse size at small x

    Full text link
    We study the distribution of gluons in transverse space in the nucleon at moderately small x (~10^{-2}). At large transverse distances (impact parameters) the gluon density is generated by the 'pion cloud' of the nucleon, and can be calculated in terms of the gluon density in the pion. We investigate the large-distance behavior in two different approaches to chiral dynamics: i) phenomenological soft-pion exchange, ii) the large-N_c picture of the nucleon as a classical soliton of the pion field, which corresponds to degenerate N and Delta states. The large-distance contributions from the 'pion cloud' cause a \~20% increase in the overall transverse size of the nucleon if x drops significantly below M_pi/M_N. This is in qualitative agreement with the observed increase of the slope of the t-dependence of the J/psi photoproduction cross section at HERA compared to fixed-target energies. We argue that the glue in the pion cloud could be probed directly in hard electroproduction processes accompanied by 'pion knockout', gamma^* + N -> gamma (or rho, J/psi) + pi + N', where the transverse momentum of the emitted pion is large while that of the outgoing nucleon is restricted to values of order M_pi.Comment: 20 pages, revtex4, 10 eps figure

    The chemical enrichment of the ICM from hydrodynamical simulations

    Get PDF
    The study of the metal enrichment of the intra-cluster and inter-galactic media (ICM and IGM) represents a direct means to reconstruct the past history of star formation, the role of feedback processes and the gas-dynamical processes which determine the evolution of the cosmic baryons. In this paper we review the approaches that have been followed so far to model the enrichment of the ICM in a cosmological context. While our presentation will be focused on the role played by hydrodynamical simulations, we will also discuss other approaches based on semi-analytical models of galaxy formation, also critically discussing pros and cons of the different methods. We will first review the concept of the model of chemical evolution to be implemented in any chemo-dynamical description. We will emphasise how the predictions of this model critically depend on the choice of the stellar initial mass function, on the stellar life-times and on the stellar yields. We will then overview the comparisons presented so far between X-ray observations of the ICM enrichment and model predictions. We will show how the most recent chemo-dynamical models are able to capture the basic features of the observed metal content of the ICM and its evolution. We will conclude by highlighting the open questions in this study and the direction of improvements for cosmological chemo-dynamical models of the next generation.Comment: 25 pages, 11 figures, accepted for publication in Space Science Reviews, special issue "Clusters of galaxies: beyond the thermal view", Editor J.S. Kaastra, Chapter 18; work done by an international team at the International Space Science Institute (ISSI), Bern, organised by J.S. Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke

    The Proton Spin and Flavor Structure in the Chiral Quark Model

    Full text link
    After a pedagogical review of the simple constituent quark model and deep inelastic sum rules, we describe how a quark sea as produced by the emission of internal Goldstone bosons by the valence quarks can account for the observed features of proton spin and flavor structures. Some issues concerning the strange quark content of the nucleon are also discussed.Comment: 59 pages with table of contents, Lecture delivered at the Schladming Winter School (March 1997), to be published by Springer-Verlag under the title "Computing Particle Properties" (eds. C. B. Lang and H. Gausterer
    • 

    corecore