16 research outputs found

    Changing genetic architecture of body mass index from infancy to early adulthood : an individual based pooled analysis of 25 twin cohorts

    Get PDF
    Publisher Copyright: © 2022, The Author(s).Background: Body mass index (BMI) shows strong continuity over childhood and adolescence and high childhood BMI is the strongest predictor of adult obesity. Genetic factors strongly contribute to this continuity, but it is still poorly known how their contribution changes over childhood and adolescence. Thus, we used the genetic twin design to estimate the genetic correlations of BMI from infancy to adulthood and compared them to the genetic correlations of height. Methods: We pooled individual level data from 25 longitudinal twin cohorts including 38,530 complete twin pairs and having 283,766 longitudinal height and weight measures. The data were analyzed using Cholesky decomposition offering genetic and environmental correlations of BMI and height between all age combinations from 1 to 19 years of age. Results: The genetic correlations of BMI and height were stronger than the trait correlations. For BMI, we found that genetic correlations decreased as the age between the assessments increased, a trend that was especially visible from early to middle childhood. In contrast, for height, the genetic correlations were strong between all ages. Age-to-age correlations between environmental factors shared by co-twins were found for BMI in early childhood but disappeared altogether by middle childhood. For height, shared environmental correlations persisted from infancy to adulthood. Conclusions: Our results suggest that the genes affecting BMI change over childhood and adolescence leading to decreasing age-to-age genetic correlations. This change is especially visible from early to middle childhood indicating that new genetic factors start to affect BMI in middle childhood. Identifying mediating pathways of these genetic factors can open possibilities for interventions, especially for those children with high genetic predisposition to adult obesity.Peer reviewe

    Structural investigations of N-methylformamide-water mixtures at various concentrations

    No full text
    Structural investigations of N-methylformamide-water mixtures (NMF-water) are performed at room temperature and atmospheric pressure for two water molar fractions x w = 0.66 and x w = 0.75 . This paper extends our recent study on the equimolar system. H-bond networks are preferentially formed between NMF and water molecules. Among a large variety of DFT optimized models, X-ray scattering data shows that the local order of each mixture is better described by a tetramer where one NMF molecule is connected to three water molecules. No self-association is observed in the considered systems. The effect of hydration is compared to the temperature and pressure effects in some hydrogen-bonded liquids

    Fission Yeast F-box Protein Pof3 Is Required for Genome Integrity and Telomere Function

    No full text
    The Skp1-Cullin-1/Cdc53-F-box protein (SCF) ubiquitin ligase plays an important role in various biological processes. In this enzyme complex, a variety of F-box proteins act as receptors that recruit substrates. We have identified a fission yeast gene encoding a novel F-box protein Pof3, which contains, in addition to the F-box, a tetratricopeptide repeat motif in its N terminus and a leucine-rich-repeat motif in the C terminus, two ubiquitous protein–protein interaction domains. Pof3 forms a complex with Skp1 and Pcu1 (fission yeast cullin-1), suggesting that Pof3 functions as an adaptor for specific substrates. In the absence of Pof3, cells exhibit a number of phenotypes reminiscent of genome integrity defects. These include G2 cell cycle delay, hypersensitivity to UV, appearance of lagging chromosomes, and a high rate of chromosome loss. pof3 deletion strains are viable because the DNA damage checkpoint is continuously activated in the mutant, and this leads to G2 cell cycle delay, thereby preventing the mutant from committing lethal mitosis. Pof3 localizes to the nucleus during the cell cycle. Molecular analysis reveals that in this mutant the telomere is substantially shortened and furthermore transcriptional silencing at the telomere is alleviated. The results highlight a role of the SCF(Pof3) ubiquitin ligase in genome integrity via maintaining chromatin structures

    Endocrine effects of tobacco smoking

    No full text
    corecore