906 research outputs found

    Lattice dynamics and the electron-phonon interaction in Ca2_2RuO4_4

    Full text link
    We present a Raman scattering study of Ca2_2RuO4_4, in which we investigate the temperature-dependence of the lattice dynamics and the electron-phonon interaction below the metal-insulator transition temperature ({\it T}MI_{\rm MI}). Raman spectra obtained in a backscattering geometry with light polarized in the ab-plane reveal 9 B1g_{1g} phonon modes (140, 215, 265, 269, 292, 388, 459, 534, and 683 cm1^{-1}) and 9 Ag_g phonon modes (126, 192, 204, 251, 304, 322, 356, 395, and 607 cm1^{-1}) for the orthorhombic crystal structure (Pbca-D2h15_{2h}^{15}). With increasing temperature toward {\it T}MI_{\rm MI}, the observed phonon modes shift to lower energies and exhibit reduced spectral weights, reflecting structural changes associated with the elongation of the RuO6_6 octahedra. Interestingly, the phonons exhibit significant increases in linewidths and asymmetries for {\it T} >> {\it T}N_{\rm N}. These results indicate that there is an increase in the effective number of electrons and the electron-phonon interaction strengths as the temperature is raised through {\it T}N_{\rm N}, suggesting the presence of orbital fluctuations in the temperature regime {\it T}N_{\rm N} << {\it T} << {\it T}MI_{\rm MI}.Comment: 6 pages, 4 figure

    Relation between the superconducting gap energy and the two-magnon Raman peak energy in Bi2Sr2Ca{1-x}YxCu2O{8+\delta}

    Full text link
    The relation between the electronic excitation and the magnetic excitation for the superconductivity in Bi2Sr2Ca{1-x}YxCu2O{8+\delta} was investigated by wide-energy Raman spectroscopy. In the underdoping region the B1g scattering intensity is depleted below the two-magnon peak energy due to the "hot spots" effects. The depleted region decreases according to the decrease of the two-magnon peak energy, as the carrier concentration ncreases. This two-magnon peak energy also determines the B1g superconducting gap energy as 2ΔαωTwoMagnonJeffective2\Delta \approx \alpha \hbar \omega_{\rm Two-Magnon} \approx J_{\rm effective} (α=0.340.41)(\alpha=0.34-0.41) from under to overdoping hole concentration.Comment: 10 pages, 4 figure

    Resonant Two-Magnon Raman Scattering in Cuprate Antiferromagnetic Insulators

    Full text link
    We present results of low-temperature two-magnon resonance Raman excitation profile measurements for single layer Sr_2CuO_2Cl_2 and bilayer YBa_2Cu_3O_{6 + \delta} antiferromagnets over the excitation region from 1.65 to 3.05 eV. These data reveal composite structure of the two-magnon line shape and strong nonmonotic dependence of the scattering intensity on excitation energy. We analyze these data using the triple resonance theory of Chubukov and Frenkel (Phys. Rev. Lett., 74, 3057 (1995)) and deduce information about magnetic interaction and band parameters in these materials.Comment: REVTeX, 4 pages + 2 PostScript (compressed) figure

    Magnetic excitations in SrCu2O3: a Raman scattering study

    Full text link
    We investigated temperature dependent Raman spectra of the one-dimensional spin-ladder compound SrCu2O3. At low temperatures a two-magnon peak is identified at 3160+/-10 cm^(-1) and its temperature dependence analyzed in terms of a thermal expansion model. We find that the two-magnon peak position must include a cyclic ring exchange of J_cycl/J_perp=0.09-0.25 with a coupling constant along the rungs of J_perp approx. 1215 cm^(-1) (1750 K) in order to be consistent with other experiments and theoretical results.Comment: 4 pages, 3 figure

    Inductively coupled plasmas sustained by an internal oscillating current

    Get PDF
    A global electromagnetic model of an inductively coupled plasma sustained by an internal oscillating current sheet in a cylindrical metal vessel is developed. The electromagnetic field structure, profiles of the rf power transferred to the plasma electrons, electron/ion number density, and working points of the discharge are studied, by invoking particle and power balance. It is revealed that the internal rf current with spatially invariable phase significantly improves the radial uniformity of the electromagnetic fields and the power density in the chamber as compared with conventional plasma sources with external flat spiral inductive coils. This configuration offers the possibility of controlling the rf power deposition in the azimuthal direction

    Spin gap formation in the quantum spin systems TiOX, X=Cl and Br

    Full text link
    In the layered quantum spin systems TiOCl and TiOBr the magnetic susceptibility shows a very weak temperature dependence at high temperatures and transition-induced phenomena at low temperatures. There is a clear connection of the observed transition temperatures to the distortion of the octahedra and the layer separation. Band structure calculations point to a relation of the local coordinations and the dimensionality of the magnetic properties. While from magnetic Raman scattering only a small decrease of the magnetic exchange by -5-10% is derived comparing TiOCl with TiOBr, the temperature dependence of the magnetic susceptibility favors a much bigger change.Comment: 5 figures, 15 pages, further information see http://www.peter-lemmens.d

    Vibrational signature of broken chemical order in a GeS2 glass: a molecular dynamics simulation

    Full text link
    Using density functional molecular dynamics simulations, we analyze the broken chemical order in a GeS2_2 glass and its impact on the dynamical properties of the glass through the in-depth study of the vibrational eigenvectors. We find homopolar bonds and the frequencies of the corresponding modes are in agreement with experimental data. Localized S-S modes and 3-fold coordinated sulfur atoms are found to be at the origin of specific Raman peaks whose origin was not previously clear. Through the ring size statistics we find, during the glass formation, a conversion of 3-membered rings into larger units but also into 2-membered rings whose vibrational signature is in agreement with experiments.Comment: 11 pages, 8 figures; to appear in Phys. Rev.

    Phase Separation Models for Cuprate Stripe Arrays

    Full text link
    An electronic phase separation model provides a natural explanation for a large variety of experimental results in the cuprates, including evidence for both stripes and larger domains, and a termination of the phase separation in the slightly overdoped regime, when the average hole density equals that on the charged stripes. Several models are presented for charged stripes, showing how density waves, superconductivity, and strong correlations compete with quantum size effects (QSEs) in narrow stripes. The energy bands associated with the charged stripes develop in the middle of the Mott gap, and the splitting of these bands can be understood by considering the QSE on a single ladder.Comment: significant revisions: includes island phase, 16 eps figures, revte

    Raman scattering studies of spin, charge, and lattice dynamics in Ca_{2-x}Sr_{x}RuO_{4} (0 =< x < 0.2)

    Full text link
    We use Raman scattering to study spin, charge, and lattice dynamics in various phases of Ca_{2-x}Sr_{x}RuO_{4}. With increasing substitution of Ca by Sr in the range 0 =< x < 0.2, we observe (1) evidence for an increase of the electron-phonon interaction strength, (2) an increased temperature-dependence of the two-magnon energy and linewidth in the antiferromagnetic insulating phase, and (3) evidence for charge gap development, and hysteresis associated with the structural phase change, both of which are indicative of a first-order metal-insulator transition (T_{MI}) and a coexistence of metallic and insulating components for T < T_{MI}

    Magnetic and Charge Correlations in La{2-x-y}Nd_ySr_xCuO_4: Raman Scattering Study

    Full text link
    Two aspects in connection with the magnetic properties of La_{2-x-y}Nd_ySr_xCuO_4 single crystals are discussed. The first is related to long wavelength magnetic excitations in x = 0, 0.01, and 0.03 La_{2-x}Sr_xCuO_4 detwinned crystals as a function of doping, temperature and magnetic field. Two magnetic modes were observed within the AF region of the phase diagram. The one at lower energies was identified with the spin-wave gap induced by the antisymmetric DM interaction and its anisotropic properties in magnetic field could be well explained using a canonical form of the spin Hamiltonian. A new finding was a magnetic field induced mode whose dynamics allowed us to discover a spin ordered state outside the AF order which was shown to persist in a 9 T field as high as 100 K above the N\'eel temperature T_N for x = 0.01. For these single magnon excitations we map out the Raman selection rules in magnetic fields and demonstrate that their temperature dependent spectral weight is peaked at the N\'eel temperature. The second aspect is related to phononic and magnetic Raman scattering in La_{2-x-y}Nd_ySr_xCuO_4 with three doping concentrations: x = 1/8, y = 0; x = 1/8, y = 0.4; and x = 0.01, y = 0. We observed that around 1/8 Sr doping and independent of Nd concentration there exists substantial disorder in the tilt pattern of the CuO_6 octahedra in both the orthorhombic and tetragonal phases which persist down to 10 K and are coupled to bond disorder in the cation layers. The weak magnitude of existing charge/spin modulations in the Nd doped structure did not allow us to detect specific Raman signatures on lattice dynamics or two-magnon scattering around 2200 cm-1.Comment: 26 pages, 22 figure
    corecore