33 research outputs found

    Glueball spectrum based on a rigorous three-dimensional relativistic equation for two-gluon bound states II: calculation of the glueball spectrum

    Full text link
    In the preceding paper, a rigorous three-dimensional relativistic equation for two-gluon bound states was derived from the QCD with massive gluons and represented in the angular momentum representation. In order to apply this equation to calculate the glueball spectrum, in this paper, the equation is recast in an equivalent three-dimensional relativistic equation satisfied by the two-gluon positive energy state amplitude. The interaction Hamiltonian in the equation is exactly derived and expressed as a perturbative series. The first term in the series describes the one-gluon exchange interaction which includes fully the retardation effect in it. This term plus the linear confining potential are chosen to be the interaction Hamiltonian and employed in the practical calculation. With the integrals containing three and four spherical Bessel functions in the QCD vertices being analytically calculated, the interaction Hamiltonian is given an explicit expression in the angular momentum representation. Numerically solving the relativistic equation with taking the contributions arising from the retardation effect and the longitudinal mode of gluon fields into account, a set of masses for the 0++,0+,1++,1+,2++0^{++},0^{-+},1^{++},1^{-+},2^{++} and 2+2^{-+\text{}} glueball states are obtained and are in fairly good agreement with the predictions given by the lattice simulatio

    Vascular Remodeling in Health and Disease

    Get PDF
    The term vascular remodeling is commonly used to define the structural changes in blood vessel geometry that occur in response to long-term physiologic alterations in blood flow or in response to vessel wall injury brought about by trauma or underlying cardiovascular diseases.1, 2, 3, 4 The process of remodeling, which begins as an adaptive response to long-term hemodynamic alterations such as elevated shear stress or increased intravascular pressure, may eventually become maladaptive, leading to impaired vascular function. The vascular endothelium, owing to its location lining the lumen of blood vessels, plays a pivotal role in regulation of all aspects of vascular function and homeostasis.5 Thus, not surprisingly, endothelial dysfunction has been recognized as the harbinger of all major cardiovascular diseases such as hypertension, atherosclerosis, and diabetes.6, 7, 8 The endothelium elaborates a variety of substances that influence vascular tone and protect the vessel wall against inflammatory cell adhesion, thrombus formation, and vascular cell proliferation.8, 9, 10 Among the primary biologic mediators emanating from the endothelium is nitric oxide (NO) and the arachidonic acid metabolite prostacyclin [prostaglandin I2 (PGI2)], which exert powerful vasodilatory, antiadhesive, and antiproliferative effects in the vessel wall

    The forward physics facility at the high-luminosity LHC

    Get PDF
    High energy collisions at the High-Luminosity Large Hadron Collider (LHC) produce a large number of particles along the beam collision axis, outside of the acceptance of existing LHC experiments. The proposed Forward Physics Facility (FPF), to be located several hundred meters from the ATLAS interaction point and shielded by concrete and rock, will host a suite of experiments to probe standard model (SM) processes and search for physics beyond the standard model (BSM). In this report, we review the status of the civil engineering plans and the experiments to explore the diverse physics signals that can be uniquely probed in the forward region. FPF experiments will be sensitive to a broad range of BSM physics through searches for new particle scattering or decay signatures and deviations from SM expectations in high statistics analyses with TeV neutrinos in this low-background environment. High statistics neutrino detection will also provide valuable data for fundamental topics in perturbative and non-perturbative QCD and in weak interactions. Experiments at the FPF will enable synergies between forward particle production at the LHC and astroparticle physics to be exploited. We report here on these physics topics, on infrastructure, detector, and simulation studies, and on future directions to realize the FPF's physics potential

    Research of Damage Imaging Algorithm in Plate Based on Signal Magnitude

    No full text

    Structural and magnetic properties of HCP-CoCrPt-SiO2 granular media

    No full text
    10.1016/S0304-8853(01)00063-4Journal of Magnetism and Magnetic Materials2253359-372JMMM
    corecore