11 research outputs found

    Mutation analysis of 18 nephronophthisis associated ciliopathy disease genes using a DNA pooling and next generation sequencing strategy

    Get PDF
    Background Nephronophthisis associated ciliopathies (NPHP-AC) comprise a group of autosomal recessive cystic kidney diseases that includes nephronophthisis (NPHP), Senior-Loken syndrome (SLS), Joubert syndrome (JBTS), and Meckel-Gruber syndrome (MKS). To date, causative mutations in NPHP-AC have been described for 18 different genes, rendering mutation analysis tedious and expensive. To overcome the broad genetic locus heterogeneity, a strategy of DNA pooling with consecutive massively parallel resequencing (MPR) was devised.Methods In 120 patients with severe NPHP-AC phenotypes, five pools of genomic DNA with 24 patients each were prepared which were used as templates in order to PCR amplify all 376 exons of 18 NPHP-AC genes (NPHP1, INVS, NPHP3, NPHP4, IQCB1, CEP290, GLIS2, RPGRIP1L, NEK8, TMEM67, INPP5E, TMEM216, AHI1, ARL13B, CC2D2A, TTC21B, MKS1, and XPNPEP3). PCR products were then subjected to MPR on an Illumina Genome-Analyser and mutations were subsequently assigned to their respective mutation carrier via CEL I endonuclease based heteroduplex screening and confirmed by Sanger sequencing.Results For proof of principle, DNA from patients with known mutations was used and detection of 22 out of 24 different alleles (92% sensitivity) was demonstrated. MPR led to the molecular diagnosis in 30/120 patients (25%) and 54 pathogenic mutations (27 novel) were identified in seven different NPHP-AC genes. Additionally, in 24 patients only single heterozygous variants of unknown significance were found.Conclusions The combined approach of DNA pooling followed by MPR strongly facilitates mutation analysis in broadly heterogeneous single gene disorders. The lack of mutations in 75% of patients in this cohort indicates further extensive heterogeneity in NPHP-AC

    KIR and HLA-C Interactions Promote Differential Dendritic Cell Maturation and Is a Major Determinant of Graft Failure following Kidney Transplantation

    Get PDF
    HLA-C is an important ligand for killer immunoglobulin like receptors (KIR) that regulate natural killer (NK) cell function. Based on KIR specificity HLA-C molecules are allocated into two groups, HLA-C1 or HLA-C2; HLA-C2 is more inhibiting to NK cell function than HLA-C1. We studied the clinical importance of HLA-C genotypes on the long-term graft survival of 760 kidney transplants performed at our centre utilising a population based genetic study and cell culture model to define putative mechanisms.Genotyping was performed using conventional DNA PCR techniques and correlations made to clinical outcomes. We found that transplant recipients with HLA-C2 had significantly better long-term graft survival than transplant recipients with HLA-C1 (66% versus 44% at 10 years, log-rank p = 0.002, HR = 1.51, 95%CI = 1.16-1.97). In in-vitro NK and dendritic cell (DC) co-culture model we made several key observations that correlated with the population based genetic study. We observed that donor derived NK cells, on activation with IL-15, promoted differential HLA-C genotype dependent DC maturation. In NK-DC co-culture, the possession of HLA-C2 by DC was associated with anti-inflammatory cytokine production (IL-1RA/IL-6), diminished DC maturation (CD86, HLA-DR), and absent CCR7 expression. Conversely, possession of HLA-C1 by DC was associated with pro-inflammatory cytokine synthesis (TNF-α, IL-12p40/p70), enhanced DC maturation and up-regulation of CCR7 expression. By immunohistochemistry the presence of donor NK cells was confirmed in pre-transplant kidneys.We propose that after kidney transplantation IL-15 activated donor derived NK cells interact with recipient DC with less activation of indirect allo-reactivity in HLA-C2 positive recipients than HLA-C1 positive recipients; this has implications for long-term graft survival. Early events following kidney transplantation involving NK-DC interaction via KIR and HLA-C immune synapse may have a central role in long-term kidney transplant outcomes
    corecore