78 research outputs found
Diferenciação analítica de vinhos-base para espumantes de duas regiões vitícolas do Rio Grande do Sul
Os objetivos deste trabalho foram caracterizar e diferenciar vinhos-base para espumante (cultivares ‘Chardonnay’ e ‘Pinot Noir’) provenientes da Serra do Nordeste e Serra do Sudeste do Rio Grande do Sul por meio de parâmetros físico-químicos e elementos minerais combinados com técnicas de análise multivariada. Foram analisados nove parâmetros físico-químicos (densidade, grau alcoólico, extrato seco total, extrato seco reduzido, acidez total, acidez volátil, acidez fixa, pH e açúcares redutores), por espectrofotometria no infravermelho, e 11 elementos minerais (Al, B, Ba, Ca, Cu, Fe, K, Mg, Mn, Na e Sr), por espectrometria de emissão ótica com plasma indutivamente acoplado (ICP-OES). Os elementos encontrados em maiores concentrações foram K, Mg e Ca e, em menores concentrações, Ba, Fe, Sr e Al. A Análise de Componentes Principais (ACP) mostrou que há uma tendência natural de separação entre os vinhos-base da Serra do Nordeste e Serra do Sudeste. Por meio da Análise Discriminante (AD) foram obtidos cinco descritores (Mg, Ca, Mn, pH e grau alcoólico) para os vinhos-base da cultivar ‘Chardonnay’ e seis descritores (B, Mn, Fe, Na, pH e acidez volátil) para a cultivar ‘Pinot Noir’, com capacidade de classificar as amostras de vinhos-base de acordo com a origem geográfica. Os elementos Mn e Mg parecem ser aqueles com maior capacidade de discriminação entre os vinhos-base da Serra do Nordeste e Serra do Sudeste.This research describes the base wines characterization and differentiation (cultivars Chardonnay and Pinot Noir) from Serra do Nordeste and Serra do Sudeste of Rio Grande do Sul by physicochemical parameters and mineral elements followed by multivariate statistical analysis. Nine physicochemical parameters (density, alcoholic content, total dry extract, reduced dry extract, total acidity, volatile acidity, fix acidity, pH and reducing sugars) were analyzed by infrared spectrofotometry and eleven mineral elements (Al, B, Ba, Ca, Cu, Fe, K, Mg, Mn, Na and Sr) by inductively coupled plasma optical emission spectrometry (ICP-OES). Elements K, Mg, and Ca were founded in higher concentrations and Ba, Fe, Sr, and Al were founded in lower ones. Principal Component Analysis (PCA) showed a natural separation tendency between wines from Serra do Nordeste and Serra do Sudeste. Five descriptors were obtained by Discriminant Analysis (DA) for base wines from cultivar Chardonnay (Mg, Ca, Mn, pH and alcoholic content) and six descriptors for base wines from cultivar Pinot Noir (B, Mn, Fe, Na, pH and volatile acidity). These descriptors were capable to classify samples of base wines according to geographical origin. Mn and Mg elements seem to be the elements with higher discrimination capacity between base wines from northwest Serra and Southeast Serra
Temporal dynamics of spectral reflectance and vegetation indices during canola crop cycle in southern Brazil
ABSTRACT: The objective of this study was to characterize the variability of spectral reflectance and temporal profiles of vegetation indices associated with nitrogen fertilization, crop cycle periods, and weather conditions of the growing season in canola canopies in southern Brazil. An experiment was carried out during the 2013 and 2014 canola growing seasons at EMBRAPA Trigo, Passo Fundo, state of Rio Grande do Sul, Brazil. The experiment was conducted in a randomized block design with four replications. Five doses of nitrogen top dressing were used as treatments: 10, 20, 40, 80, and 160kg ha-1. Measurements were obtained with the spectroradiometer positioned above the canopy, to construct spectral reflectance curves for canola and establish temporal profiles for several vegetation indices (SR, NDVI, EVI, SAVI, and GNDVI). In addition, data on shoot dry matter were obtained and phenological stages were determined. The spectral reflectance curves of canola were reported to change with canopy growth and development. Temporal profiles of vegetation indices showed two maximum peaks, one before flowering and other after flowering. The indices SR, NDVI, EVI, SAVI, and GNDVI were able to characterize changes in the canola canopy over time, as a function of phenological phases, weather conditions, and nitrogen fertilization, throughout the development cycle. Plant growth and development, variations in crop management, and environmental conditions affect the spectral response of canola
- …