1,033 research outputs found
Recommended from our members
The SLIM (Social learning for the integrated management and sustainable use of water at catchment scale) Final Report
Background: SLIM stands for 'Socuak Learning for the Integrated Management and Sustainable Use of Water at Catchment Scale'. It is a multi-country research project funded by the European Commission (DG RESEARCH - 5th Framework Programme for research and technological development, 1998-2002). Its main theme is the investigation of the socio-economic aspects of the sustainable use of water. Within this theme, its main focus of interest lies in understanding the application of social learning as a conceptual framework, an operational principle, a policy instrument and a process of systemic change
Nematode biomass spectra as descriptors of functional changes due to human and natural impact
Nematode biomass spectra (NBS) for different nematode communities—subject to different forms of stress and enrichment—from the Belgian continental shelf have been constructed and analysed. These analyses showed that non-normalised NBS yield better results for comparisons of nematode assemblages than normalised NBS (in which the biomass in a weight class is divided by its corresponding weight interval) since the ecologically relevant information is retained. Normalising the spectra caused elevated biomass values and peaks to disappear, introducing bias when interpreting the distribution of biomass over spectra. Cumulative nematode biomass spectra proved to be useful in evaluating statistical differences, using the slope of the regression line of the cumulative biomass to the nominal value of a log2-based size class. Interpreting Pareto-type graphs and regressions was not straightforward. We suggest a combined use of both NBS and the regression approach for the analysis of NBS. NBS and cumulative NBS constructed for nematode communities from undisturbed sediments proved to be conservative: no differences in size distribution were found for communities from different locations. Physical disturbance, introduced by sand extraction, did not affect the regression slopes of cumulative NBS. However, a shift in peak biomass values towards lower size classes was observed in the regular NBS. This was attributed to an alteration of the nematode communities due to the frequent physical disturbance of the sediments. At an oxygen-stressed site, we observed a single class biomass peak, due to the presence of a single nematode species well adapted to the impoverished sediment quality. Phytoplankton sedimentation during a spring bloom corresponded to shifts in peaks in NBS due to a change in age structure of the nematode communities. Biomass values probably increased as a result of a higher food supply to the benthos
High-frequency two-input CMOS OTA for continuous-time filter applications
“This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.”A high-frequency fully differential CMOS operational transconductance amplifier (OTA) is presented for continuous-time filter applications in the megahertz range. The proposed design technique combines a linear cross-coupled quad input stage with an enhanced folded-cascode circuit to increase the output resistance of the amplifier. SPICE simulations show that DC-gain enhancement can be obtained without significant bandwidth limitation. The two-input OTA developed is used in high-frequency tuneable filter design based on IFLF and LC ladder simulation structures. Simulated results of parameters and characteristics of the OTA and filters in a standard 1.2 μm CMOS process (MOSIS) are presented. A tuning circuit is also discussed.Peer reviewe
Low-power, low-penalty, flip-chip integrated, 10Gb/s ring-based 1V CMOS photonics transmitter
Modulation with 7.5dB transmitter penalty is demonstrated from a novel 1.5Vpp differential CMOS driver flip-chip integrated with a Si ring modulator, consuming 350fJ/bit from a single 1V supply at bit rates up to 10Gb/s
transFold: a web server for predicting the structure and residue contacts of transmembrane beta-barrels
Transmembrane β-barrel (TMB) proteins are embedded in the outer membrane of Gram-negative bacteria, mitochondria and chloroplasts. The cellular location and functional diversity of β-barrel outer membrane proteins makes them an important protein class. At the present time, very few non-homologous TMB structures have been determined by X-ray diffraction because of the experimental difficulty encountered in crystallizing transmembrane (TM) proteins. The transFold web server uses pairwise inter-strand residue statistical potentials derived from globular (non-outer-membrane) proteins to predict the supersecondary structure of TMB. Unlike all previous approaches, transFold does not use machine learning methods such as hidden Markov models or neural networks; instead, transFold employs multi-tape S-attribute grammars to describe all potential conformations, and then applies dynamic programming to determine the global minimum energy supersecondary structure. The transFold web server not only predicts secondary structure and TMB topology, but is the only method which additionally predicts the side-chain orientation of transmembrane β-strand residues, inter-strand residue contacts and TM β-strand inclination with respect to the membrane. The program transFold currently outperforms all other methods for accuracy of β-barrel structure prediction. Available at
- …