18,871 research outputs found

    Determination of Terminal Sterilization Process Parameters

    Get PDF
    Time, temperature, and microbial effects on terminal heat sterilization of spacecraf

    Extreme 18O-enrichment in majorite constrains a crustal origin of transition zone diamonds

    Get PDF
    The fate of subducted oceanic lithosphere and its role in the planet-scale geochemical cycle is a key problem in solid Earth studies. Asthenospheric and transition zone minerals included in diamond have been interpreted as representing subducted oceanic crust based on inclusion REE patterns and strong 13C depletion of their host diamond (δ13C as low as -23 ‰). This view/explanation, however, has been challenged by alternative interpretations that variable carbon isotopic compositions either result from high temperature fractionation involving carbides, or reflect primordial, unhomogenised mantle reservoirs. Here, we present the first oxygen isotope analyses of inclusions in such ultradeep diamonds – majoritic garnets in diamond from Jagersfontein (South Africa). The oxygen isotope compositions provide unambiguous evidence for derivation of the inclusions from subducted crustal materials. The δ18OVSMOW values of the majorites range from +8.6 ‰ to +10.0 ‰, well outside that of ambient mantle (+5.5 ±0.4 ‰) and indicate that the protoliths were very heavily weathered at relatively low temperatures. When this information is combined with the broadly eclogitic composition of the majoritic garnets, a derivation from subducted sea-floor basalts is implied. Based on the association between the heavy oxygen and light carbon, the light carbon isotope composition cannot relate to deep mantle processes and is also ultimately derived from the crust

    Observation of fast stochastic ion heating by drift waves

    Get PDF
    Anomalously fast ion heating has been observed in the Caltech Encore tokamak [Phys. Rev. Lett. 59, 1436 (1987)], with the use of laser-induced fluorescence. This heating was found to be independent of electron temperature, but was well correlated with the presence of large-amplitude drift-Alfvén waves. Evidence is presented that suggests that the heating is stochastic and occurs when the ion displacement due to polarization drift becomes comparable to the perpendicular wavelength, i.e., when k[perpendicular] (mik[perpendicular] phi0/qB^2)~1. Stochastic heating may also be the cause of the anomalously high ion temperatures observed in reversed-field pinches

    Real-time phase-selective data acquisition system for measurement of wave phenomena in pulsed plasma discharges

    Get PDF
    A novel data acquisition system and methodology have been developed for the study of wave phenomena in pulsed plasma discharges. The method effectively reduces experimental uncertainty due to shot-to-shot fluctuations in high repetition rate experiments. Real-time analysis of each wave form allows classification of discharges by wave amplitude, phase, or other features. Measurements can then be constructed from subsets of discharges having similar wave properties. The method clarifies the trade-offs between experimental uncertainty reduction and increased demand for data storage capacity and acquisition time. Finally, this data acquisition system is simple to implement and requires relatively little equipment: only a wave form digitizer and a moderately fast computer

    Solving the Jitter Problem in Microwave Compressed Ultrafast Electron Diffraction Instruments: Robust Sub-50 fs Cavity-Laser Phase Stabilization

    Full text link
    We demonstrate the compression of electron pulses in a high-brightness ultrafast electron diffraction (UED) instrument using phase-locked microwave signals directly generated from a mode-locked femtosecond oscillator. Additionally, a continuous-wave phase stabilization system that accurately corrects for phase fluctuations arising in the compression cavity from both power amplification and thermal drift induced detuning was designed and implemented. An improvement in the microwave timing stability from 100 fs to 5 fs RMS is measured electronically and the long-term arrival time stability (>>10 hours) of the electron pulses improves to below our measurement resolution of 50 fs. These results demonstrate sub-relativistic ultrafast electron diffraction with compressed pulses that is no longer limited by laser-microwave synchronization.Comment: Accepted for publication in Structural Dynamic

    IR Kuiper Belt Constraints

    Get PDF
    We compute the temperature and IR signal of particles of radius aa and albedo α\alpha at heliocentric distance RR, taking into account the emissivity effect, and give an interpolating formula for the result. We compare with analyses of COBE DIRBE data by others (including recent detection of the cosmic IR background) for various values of heliocentric distance, RR, particle radius, aa, and particle albedo, α\alpha. We then apply these results to a recently-developed picture of the Kuiper belt as a two-sector disk with a nearby, low-density sector (40<R<50-90 AU) and a more distant sector with a higher density. We consider the case in which passage through a molecular cloud essentially cleans the Solar System of dust. We apply a simple model of dust production by comet collisions and removal by the Poynting-Robertson effect to find limits on total and dust masses in the near and far sectors as a function of time since such a passage. Finally we compare Kuiper belt IR spectra for various parameter values.Comment: 34 pages, LaTeX, uses aasms4.sty, 11 PostScript figures not embedded. A number of substantive comments by a particularly thoughtful referee have been addresse
    • …
    corecore