110 research outputs found

    Shared control of an aerial cooperative transportation system with a cable-suspended payload

    Get PDF
    This paper presents a novel bilateral shared framework for a cooperative aerial transportation and manipulation system composed by a team of micro aerial vehicles with a cable-suspended payload. The human operator is in charge of steering the payload and he/she can also change online the desired shape of the formation of robots. At the same time, an obstacle avoidance algorithm is in charge of avoiding collisions with the static environment. The signals from the user and from the obstacle avoidance are blended together in the trajectory generation module, by means of a tracking controller and a filter called dynamic input boundary (DIB). The DIB filters out the directions of motions that would bring the system too close to singularities, according to a suitable metric. The loop with the user is finally closed with a force feedback that is informative of the mismatch between the operator’s commands and the trajectory of the payload. This feedback intuitively increases the user’s awareness of obstacles or configurations of the system that are close to singularities. The proposed framework is validated by means of realistic hardware-in-the-loop simulations with a person operating the system via a force-feedback haptic interface

    Object Recognition in Swarm Systems: Preliminary Results

    No full text
    Object recognition is a fundamental topic for the development of robotic systems able to interact with the environment. Most existing methods are based on vision systems and assume a broad point of view over the objects, which are observed in their entirety. This assumption is sometimes difficult to fulfill in practice, and in particular in swarm systems, constituted by a multitude of small robots with limited sensing and computational capabilities. We have developed a method for object recognition with a heterogeneous swarm of low-informative spatially-distributed sensors employing a distributed version of the naive Bayes classifier. Simulation results show the effectiveness of this approach highlighting some nice properties of the developed algorithm

    Autonomous Vegetation Identification for Outdoor Aerial Navigation

    No full text
    Identification of landmarks for outdoor navigation is often performed using computationally expensive computer vision methods or via heavy and expensive multi-spectral and range sensors. Both choices are forbidden on Micro Aerial Vehicles (MAV) due to limited payload and computational power. However, an appropriate choice of the hardware sensor equipment allows the employment of mixed multi-spectral analysis and computer vision techniques to identify natural landmarks. In this work, we propose a low-cost low-weight camera array with appropriate optical filters to be exploited both as stereo camera and multi-spectral sensor. Through stereo vision and the Normalized Difference Vegetation Index (NDVI), we are able to classify the observed materials in the scene among several different classes, identify vegetation and water bodies and provide measurements of their relative bearing and distance from the robot. A handheld prototype of this camera array is tested in outdoor environment

    Distributed Target Identification in Robotic Swarms

    No full text
    The ability to identify the target of a common action is fundamental for the development of a multi-robot team able to interact with the environment. In most existing systems, the identification is carried on individually, based on either color coding, shape identification or complex vision systems. Those methods usually assume a broad point of view over the objects, which are observed in their entirety. This assumption is sometimes difficult to fulfil in practice, and in particular in swarm systems, constituted by a multitude of small robots with limited sensing and computational capabilities. In this paper, we propose a method for target identification with a heterogeneous swarm of low-informative spatially-distributed sensors employing a distributed version of the naive Bayes classifier. Despite limited individual sensing capabilities, the recursive application of the Bayes law allows the identification if the robots cooperate sharing the information that they are able to gather from their limited points of view. Simulation results show the effectiveness of this approach highlighting some properties of the developed algorithm

    Cooperative transportation of a payload using quadrotors: A reconfigurable cable-driven parallel robot

    No full text
    This paper addresses the problem of cooperative aerial transportation of an object using a team of quadrotors. The approach presented to solve this problem accounts for the full dynamics of the system and it is inspired by the literature on reconfigurable cable-driven parallel robots (RCDPR). Using the modelling convention of RCDPR it is derived a direct relation between the motion of the quadrotors and the motion of the payload. This relation makes explicit the available internal motion of the system, which can be used to automatically achieve additional tasks. The proposed method does not require to specify a priory the forces in the cables and uses a tension distribution algorithm to optimally distribute them among the robots. The presented framework is also suitable for online teleoperation. Physical simulations with a human-in-the-loop validate the proposed approach

    Cooperative transportation of a payload using quadrotors: a reconfigurable cable-driven parallel robot

    No full text
    This paper addresses the problem of cooperative aerial transportation of an object using a team of quadrotors. The approach presented to solve this problem accounts for the full dynamics of the system and it is inspired by the literature on reconfigurable cable-driven parallel robots (RCDPR). Using the modelling convention of RCDPR it is derived a direct relation between the motion of the quadrotors and the motion of the payload. This relation makes explicit the available internal motion of the system, which can be used to automatically achieve additional tasks. The proposed method does not require to specify a priory the forces in the cables and uses a tension distribution algorithm to optimally distribute them among the robots. The presented framework is also suitable for online teleoperation. Physical simulations with a human-in-the-loop validate the proposed approach
    • …
    corecore