37 research outputs found

    Chemical composition and antigenotoxic properties of Lippia alba essential oils

    Get PDF
    The present work evaluated the chemical composition and the DNA protective effect of the essential oils (EOs) from Lippia alba against bleomycin-induced genotoxicity. EO constituents were determined by Gas Chromatography/Mass Spectrometric (GC-MS) analysis. The major compounds encountered being citral (33% geranial and 25% neral), geraniol (7%) and trans-β-caryophyllene (7%) for L. alba specimen COL512077, and carvone (38%), limonene (33%) and bicyclosesquiphellandrene (8%) for the other, COL512078. The genotoxicity and antigenotoxicity of EO and the compounds citral, carvone and limonene, were assayed using the SOS Chromotest in Escherichia coli. The EOs were not genotoxic in the SOS chromotest, but one of the major compound (limonene) showed genotoxicity at doses between 97 and 1549 mM. Both EOs protected bacterial cells against bleomycin-induced genotoxicity. Antigenotoxicity in the two L. alba chemotypes was related to the major compounds, citral and carvone, respectively. The results were discussed in relation to the chemopreventive potential of L. alba EOs and its major compounds

    Repellents inhibit P450 enzymes in Stegomyia (Aedes) aegypti.

    Get PDF
    The primary defence against mosquitoes and other disease vectors is often the application of a repellent. Despite their common use, the mechanism(s) underlying the activity of repellents is not fully understood, with even the mode of action of DEET having been reported to be via different mechanisms; e.g. interference with olfactory receptor neurones or actively detected by olfactory receptor neurones on the antennae or maxillary palps. In this study, we discuss a novel mechanism for repellence, one of P450 inhibition. Thirteen essential oil extracts from Colombian plants were assayed for potency as P450 inhibitors, using a kinetic fluorometric assay, and for repellency using a modified World Health Organisation Pesticide Evaluations Scheme (WHOPES) arm-in cage assay with Stegomyia (Aedes) aegypti mosquitoes. Bootstrap analysis on the inhibition analysis revealed a significant correlation between P450-inhibition and repellent activity of the oils

    Chemical composition and antiprotozoal activities of Colombian Lippia spp essential oils and their major components

    No full text
    The chemical composition and biological activities of 19 essential oils and seven of their major components were tested against free and intracellular forms of Leishmania chagasi and Trypanosoma cruzi parasites as well as Vero and THP-1 mammalian cell lines. The essential oils were obtained from different species of Lippia, a widely distributed genus of Colombian plants. They were extracted by microwave radiation-assisted hydro-distillation and characterised by GC-FID and GC-MS. The major components were geranial, neral, limonene, nerol, carvacrol, p-cymene, γ-terpinene, carvone and thymol. The essential oil of Lippia alba exhibited the highest activity against T. cruzi epimastigotes and intracellular amastigotes with an IC50 of 5.5 μg/mL and 12.2 μg/mL, respectively. The essential oil of Lippia origanoides had an IC50 of 4.4 μg/mL in L. chagasi promastigotes and exhibited no toxicity in mammalian cells. Thymol (IC50 3.2 ± 0.4 μg/mL) and S-carvone (IC50 6.1 ± 2.2 μg/mL), two of the major components of the active essential oils, were active on intracellular amastigotes of T. cruziinfected Vero cells, with a selective index greater than 10. None of the essential oils or major components tested in this study was active on amastigotes of L. chagasi infected THP-1 cells
    corecore