68 research outputs found

    Multiple field-of-view MCAO for a Large Solar Telescope: LOST simulations

    Full text link
    In the framework of a 4m class Solar Telescope we studied the performance of the MCAO using the LOST simulation package. In particular, in this work we focus on two different methods to reduce the time delay error which is particularly critical in solar adaptive optics: a) the optimization of the wavefront reconstruction by reordering the modal base on the basis of the Mutual Information and b) the possibility of forecasting the wavefront correction through different approaches. We evaluate these techniques underlining pros and cons of their usage in different control conditions by analyzing the results of the simulations and make some preliminary tests on real data.Comment: 10 pages, 5 figures to be published in Adaptive Optics Systems II (Proceedings Volume) Proceedings of SPI

    SFADI: the Speckle-Free Angular Differential Imaging method

    Get PDF
    We present a new processing technique aimed at significantly improving the angular differential imaging method (ADI) in the context of high-contrast imaging of faint objects nearby bright stars in observations obtained with extreme adaptive optics (EXAO) systems. This technique, named "SFADI" for "Speckle-Free ADI", allows to improve the achievable contrast by means of speckles identification and suppression. This is possible in very high cadence data, which freeze the atmospheric evolution. Here we present simulations in which synthetic planets are injected into a real millisecond frame rate sequence, acquired at the LBT telescope at visible wavelength, and show that this technique can deliver low and uniform background, allowing unambiguous detection of 10510^{-5} contrast planets, from 100100 to 300300 mas separations, under poor and highly variable seeing conditions (0.80.8 to 1.51.5 arcsec FWHM) and in only 2020 min of acquisition. A comparison with a standard ADI approach shows that the contrast limit is improved by a factor of 55. We extensively discuss the SFADI dependence on the various parameters like speckle identification threshold, frame integration time, and number of frames, as well as its ability to provide high-contrast imaging for extended sources, and also to work with fast acquisitions.Comment: Accepted for publication in Ap

    High-resolution wave dynamics in the lower solar atmosphere

    Full text link
    The magnetic and convective nature of the Sun's photosphere provides a unique platform from which generated waves can be modelled, observed, and interpreted across a wide breadth of spatial and temporal scales. As oscillations are generated in-situ or emerge through the photospheric layers, the interplay between the rapidly evolving densities, temperatures, and magnetic field strengths provides dynamic evolution of the embedded wave modes as they propagate into the tenuous solar chromosphere. A focused science team was assembled to discuss the current challenges faced in wave studies in the lower solar atmosphere, including those related to spectropolarimetry and radiative transfer in the optically thick regions. Following the Theo Murphy international scientific meeting held at Chicheley Hall during February 2020, the scientific team worked collaboratively to produce 15 independent publications for the current Special Issue, which are introduced here. Implications from the current research efforts are discussed in terms of upcoming next-generation observing and high performance computing facilities.Comment: 16 pages, 4 figures, Introduction to the "High-resolution wave dynamics in the lower solar atmosphere" special issue of the Philosophical Transactions A: https://walsa.team/u/rst

    Accurately constraining velocity information from spectral imaging observations using machine learning techniques

    Full text link
    Determining accurate plasma Doppler (line-of-sight) velocities from spectroscopic measurements is a challenging endeavour, especially when weak chromospheric absorption lines are often rapidly evolving and, hence, contain multiple spectral components in their constituent line profiles. Here, we present a novel method that employs machine learning techniques to identify the underlying components present within observed spectral lines, before subsequently constraining the constituent profiles through single or multiple Voigt fits. Our method allows active and quiescent components present in spectra to be identified and isolated for subsequent study. Lastly, we employ a Ca II 8542 {\AA} spectral imaging dataset as a proof-of-concept study to benchmark the suitability of our code for extracting two-component atmospheric profiles that are commonly present in sunspot chromospheres. Minimisation tests are employed to validate the reliability of the results, achieving median reduced χ2\chi^2 values equal to 1.03 between the observed and synthesised umbral line profiles.Comment: 23 pages, 8 figures. Improved formatting of abstract and reference

    High-frequency torsional Alfvén waves as an energy source for coronal heating

    Get PDF
    The existence of the Sun’s hot atmosphere and the solar wind acceleration continues to be an outstanding problem in solar-astrophysics. Although magnetohydrodynamic (MHD) modes and dissipation of magnetic energy contribute to heating and the mass cycle of the solar atmosphere, yet direct evidence of such processes often generates debate. Ground-based 1-m Swedish Solar Telescope (SST)/CRISP, Hα 6562.8 Å observations reveal, for the first time, the ubiquitous presence of high frequency (~12–42 mHz) torsional motions in thin spicular-type structures in the chromosphere. We detect numerous oscillating flux tubes on 10 June 2014 between 07:17 UT to 08:08 UT in a quiet-Sun field-of-view of 60” × 60” (1” = 725 km). Stringent numerical model shows that these observations resemble torsional Alfvén waves associated with high frequency drivers which contain a huge amount of energy (~105 W m−2) in the chromosphere. Even after partial reflection from the transition region, a significant amount of energy (~103 W m−2) is transferred onto the overlying corona. We find that oscillating tubes serve as substantial sources of Alfvén wave generation that provide sufficient Poynting flux not only to heat the corona but also to originate the supersonic solar wind

    Torsional oscillations within a magnetic pore in the solar photosphere

    Get PDF
    Alfvén waves have proven to be important in a range of physical systems due to their ability to transport non-thermal energy over long distances in a magnetized plasma. This property is of specific interest in solar physics, where the extreme heating of the atmosphere of the Sun remains unexplained. In an inhomogeneous plasma such as a flux tube in the solar atmosphere, they manifest as incompressible torsional perturbations. However, despite evidence in the upper atmosphere, they have not been directly observed in the photosphere. Here, we report the detection of antiphase incompressible torsional oscillations observed in a magnetic pore in the photosphere by the Interferometric Bidimensional Spectropolarimeter. State-of-the-art numerical simulations suggest that a kink mode is a possible excitation mechanism of these waves. The excitation of torsional waves in photospheric magnetic structures can substantially contribute to the energy transport in the solar atmosphere and the acceleration of the solar wind, especially if such signatures will be ubiquitously detected in even smaller structures with the forthcoming next generation of solar telescopes

    Penumbral Brightening Events Observed in AR NOAA 12546

    Get PDF
    Penumbral transient brightening events have been attributed to magnetic reconnection episodes occurring in the low corona. We investigated the trigger mechanism of these events in active region NOAA 12546 by using multiwavelength observations obtained with the Interferometric Bidimensional Spectrometer, by the Solar Dynamics Observatory, the Interface Region Imaging Spectrograph, and the Hinode satellites. We focused on the evolution of an area of the penumbra adjacent to two small-scale emerging flux regions (EFRs), which manifested three brightening events detected from the chromosphere to the corona. Two of these events correspond to B-class flares. The same region showed short-lived moving magnetic features (MMFs) that streamed out from the penumbra. In the photosphere, the EFRs led to small-scale penumbral changes associated with a counter-Evershed flow and to a reconfiguration of the magnetic fields in the moat. The brightening events had one of the footpoints embedded in the penumbra and seemed to result from the distinctive interplay between the preexisting penumbral fields, MMFs, and the EFRs. The IRIS spectra measured therein reveal enhanced temperature and asymmetries in spectral lines, suggestive of event triggering at different heights in the atmosphere. Specifically, the blue asymmetry noted in C II and Mg II h&k lines suggests the occurrence of chromospheric evaporation at the footpoint located in the penumbra as a consequence of the magnetic reconnection process at higher atmospheric heights

    Unveiling the magnetic nature of chromospheric vortices

    Get PDF
    Context. Vortex structures in the Sun’s chromosphere are believed to channel energy between different layers of the solar atmosphere. Aims. We investigate the nature and dynamics of two small-scale quiet-Sun rotating structures in the chromosphere. Methods. We analysed two chromospheric structures that show clear rotational patterns in spectropolarimetric observations taken with the Interferometric Bidimensional Spectrometer at the Ca II 8542 Å line. Results. We present the detection of spectropolarimetric signals that manifest the magnetic nature of rotating structures in the chromosphere. Our observations show two long-lived structures of plasma that each rotate clockwise inside a 10 arcsec2 quiet-Sun region. Their circular polarisation signals are five to ten times above the noise level. Line-of-sight Doppler velocity and horizontal velocity maps from the observations reveal clear plasma flows at and around the two structures. A magnetohydrodynamics simulation shows these two structures are plausibly magnetically connected. Wave analysis suggests that the observed rotational vortex pattern could be due to a combination of slow actual rotation and a faster azimuthal phase speed pattern of a magnetoacoustic mode. Conclusions. Our results imply that the vortex structures observed in the Sun’s chromosphere are magnetic in nature and that they can be connected locally through the chromospher

    The Signature of Flare Activity in Multifractal Measurements of Active Regions Observed by SDO/HMI

    Get PDF
    Recent studies indicate that measurements of fractal and multifractal parameters of active regions (ARs) are inefficient tools for distinguishing ARs on the basis of the flare activity or to predict flare events. In an attempt to validate this result on a large observation data set of higher spatial and temporal resolution and higher flux sensitivity than employed in previous studies, we analyzed high-cadence time series of line-of-sight magnetograms of 43 ARs characterized by different flare activity, which were observed with SDO/HMI from May 2010 to December 2013. On these data, we estimated four parameters, the generalized fractal dimensions D 0 and D 8, and the multifractal parameters C div and D div. We found distinct average values of the parameters measured on ARs that have hosted flares of different class. However, the dispersion of values measured on ARs that have produced the same class of events is such that the parameters deduced from distinct classes of flaring regions can also largely overlap. Based on the results of our measurements, C- and M-class flaring ARs are practically indistinguishable, and the same is true for M- and X-class flaring ARs. We only found consistent changes on the time series of the measured parameters on ≈ 50 % of the ARs and ≈ 50 % of the M- and X-class events. We show that these results hold for fractal and multifractal parameter estimates based on total unsigned and signed flux data of the ARs
    corecore