277 research outputs found

    Unique perfect phylogeny is NP-hard

    Full text link
    We answer, in the affirmative, the following question proposed by Mike Steel as a $100 challenge: "Is the following problem NP-hard? Given a ternary phylogenetic X-tree T and a collection Q of quartet subtrees on X, is T the only tree that displays Q ?

    A sufficient condition guaranteeing large cycles in graphs

    Get PDF
    AbstractWe generalize Bedrossian-Chen-Schelp's condition (1993) for the existence of large cycles in graphs, and give infinitely many examples of graphs which fulfill the new condition for hamiltonicity, while the related condition by Bedrossian, Chen, and Schelp is not fulfilled

    On edge-sets of bicliques in graphs

    Full text link
    A biclique is a maximal induced complete bipartite subgraph of a graph. We investigate the intersection structure of edge-sets of bicliques in a graph. Specifically, we study the associated edge-biclique hypergraph whose hyperedges are precisely the edge-sets of all bicliques. We characterize graphs whose edge-biclique hypergraph is conformal (i.e., it is the clique hypergraph of its 2-section) by means of a single forbidden induced obstruction, the triangular prism. Using this result, we characterize graphs whose edge-biclique hypergraph is Helly and provide a polynomial time recognition algorithm. We further study a hereditary version of this property and show that it also admits polynomial time recognition, and, in fact, is characterized by a finite set of forbidden induced subgraphs. We conclude by describing some interesting properties of the 2-section graph of the edge-biclique hypergraph.Comment: This version corrects an error in Theorem 11 found after the paper went into prin

    Minimal classes of graphs of unbounded clique-width defined by finitely many forbidden induced subgraphs

    Full text link
    We discover new hereditary classes of graphs that are minimal (with respect to set inclusion) of unbounded clique-width. The new examples include split permutation graphs and bichain graphs. Each of these classes is characterised by a finite list of minimal forbidden induced subgraphs. These, therefore, disprove a conjecture due to Daligault, Rao and Thomasse from 2010 claiming that all such minimal classes must be defined by infinitely many forbidden induced subgraphs. In the same paper, Daligault, Rao and Thomasse make another conjecture that every hereditary class of unbounded clique-width must contain a labelled infinite antichain. We show that the two example classes we consider here satisfy this conjecture. Indeed, they each contain a canonical labelled infinite antichain, which leads us to propose a stronger conjecture: that every hereditary class of graphs that is minimal of unbounded clique-width contains a canonical labelled infinite antichain.Comment: 17 pages, 7 figure
    corecore