
DISCRETE 
MATHEMATICS 

ELSEVIER Discrete Mathematics 169 (1997) 273 277 

Note  

A sufficient condition guaranteeing large cycles in graphs 

Ladis lav  S tacho  1 

Institute for Informatics, Slovak Academy of Sciences, P.O. Box 56 DiLbravskh Cesta 9, 
840 O0 Bratislava 4, Slovakia 

Received 30 March 1995; revised 26 March 1996 

Abstract 

We generalize Bedrossian-Chen-Schelp's condition (1993) for the existence of large cycles in 
graphs, and give infinitely many examples of graphs which fulfill the new condition for 
hamiltonicity, while the related condition by Bedrossian, Chen, and Schelp is not fulfilled. 

1. Introduction 

Througout,  the graphs K1,3 and K1, 3 -t-e, e is an edge, are called a claw and 
a modified claw. Let C(G) denote the set of all pairs of non-adjacent vertices of each 
induced claw or induced modified claw of G. Let G be a graph of order n and let k be 
an integer; 0 ~< k ~< n. The graph G is said to satisfy the property PC(k)  if max{d(x) ,  

d(y)} >~ k/2 for each pair of vertices Ix, y] e C(G), where d(u) denotes the degree of the 
vertex u. Considering this property, Bedrossian, Chen and Schelp proved: 

Theorem 1 ([1]). Let  G be a 2-connected 9raph of  order n >~ 3 and let 3 <<, k <~ n. I f  

G satisfies PC(k)  then G contains a cycle of  length >~ k. 

For  any subset S of V(G) the subgraph induced by the set S is denoted by (S) .  Let 
OG(u, v) be the number of components of ( N ( u ) )  containing no neighbour of v in G. 
Let abs(k) = max{k, 0}, and let eG(u, v) denote the number of vertices x ~ V(G) such 

that ux, vx E E(G). Similarly, let//o(u, v) denote the number of vertices x ~ V(G) such 
that x ¢ v, ux, vx¢E(G) and distG(u, x) = 2, where dist ,(a,  b) denotes the distance 
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between the vertices a and b in G. Finally, let us define XG(u, v)=  ~k~(u,v)+ 
abs(~(u,  v ) -  tie(u, v ) -  1). In [3] it was proved that if for any two non-adjacent 
vertices x, y of a graph G of order n it holds that d(x )+  d(y)+ max{~OG(x, y), 
~k~(y, x)}/> n, then G is hamiltonian, thus generalizing the well known Ore's result. 
The invariant g was introduced in [4], where Bondy's [2] and Polick~'s [3] conditions 
for hamiltonicity were generalized. One can see that if two vertices x and y of a graph 
G have "a small number" of neighbours in common, then ~OG(x, y) can be non-zero. If 
the vertices x and y have "many" neighbours in common, then ~O~(x, y) is "small" 
(often zero), but Xo(x,y) can be non-zero. The complete bipartite graphs 
G = K .... n/> 2, provide examples of graphs in which ~ ( x ,  y) < gG(x, y) for any pair 
of non-adjacent vertices x, y. 

The aim of this note is to improve Theorem 1 by considering the invariant ~ again. 
More precisely, we describe a parameter (related to X) which gives an adjustment to 
the degree requirement for non-adjacent vertices which are part of an induced claw or 
modified claw in the graph. The parameter, say og(G), is defined as og(G) = minxy¢g~o) 
max{xG(x, y), Xo(Y, x)}. Note that there exist graphs with non-zero ~o. The cycles C, 
can serve as simple examples. For other examples we refer the reader to Remark 1. 

We define, involving the new parameter ~o, a property, say P(k), (related to the 
property PC(k)) as follows. Let G be a graph of order n and let k be an integer; 
0 ~< k ~< n. The graph G is said to satisfy the property P(k) if 
max{d(x), d(y)} 1> (k - o9(G))/2 for each pair of vertices Ix, y] ~ C(G). Following this 
notation, our main result is then 

Theorem 2. Let G be a 2-connected graph of order n >1 3 and let 3 <~ k <~ n. l f  G satisfies 
P(k) then G contains a cycle of length >>. k. 

The proof of Theorem 2 is based on Corollary 1 of Lemma 4 which is a generaliz- 
ation of the result of Bondy [2]. With Corollary 1, a proof of Theorem 2 can easily be 
obtained from [1, proof of Theorem 1] by replacing k with k - ~o(G) and PC(k) with 
P(k). Therefore the proof of Theorem 2 is omitted. 

2. Results 

We will need some definitions and auxiliary results. Let Pi be a path. For simplicity, 
we will refer to the first vertex of Pi, as f~ and to the last vertex of Pi as li. If 
P = ( f ,  xl, x2 . . . .  ,Xk, l) is a path, then the reverse path to P is the path 
P = ( f  Xk, X~_ 1, . . . ,  Xl, r), where f =  l and/ -=f .  When u, v ~ V(P) and u precedes v on 
P we write u-<pv. The subpath of P starting at u and ending at v will be denoted by 
[u, v]; similarly, [u, v]i will denote the section of Pi. We write p(v) and s(v) for the 
predecessor and successor of v on P, respectively. If Pi and Pj are two paths for which 
li =f~, then the composition P~.Pj is the path [f~, p(li)]~ followed by Pj. A path P has 
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length L(P) = [ V(P)I - 1; a cycle C has length L(C) = I V(C)I. Let P, Pi and Pj be paths 
such that V ( P ) n V ( P , )  = {fi, li}, V(P)cTV(Pj) = {j~, lj} and V(Pi)cTV(Pj) = 0. Then P, 
overlaps with P~ on P i f f /<pf j~(e  l i<e li. 

Lemma I ([2]). Let  G be a 2-connected graph and let P be any path in G. Then for some 

m >~ 1, there is a sequence of  m pairwise edge-disjoint paths P1 . . . . .  P,,, satisfying 

f l = f ,  t in=l ,  V ( P ) ( T V ( P i ) = { f i ,  li} , l <~i<~m, 

and such that, for 1 <<. i < m - 1, Pi overlaps with Pi+l on P. 

Lemma 2 ([4]). Let u, v be a pair of  vertices of  a graph G. Let  H be the graph induced 
by a set of  vertices S satisfying 

{u}wN(u)w{v}wN(v )  c_ S c V(G). 

Then Zo(u, v) <~ Zn(u, v) and ~o(v, u) <, Zn(v, u). 

The proof of the following result can be found in I-4]. Because of its importance in 
the proof of Lemma 4, we outline the proof. 

Lemma 3 ([43). Let  G be a graph with a hamihonian path P = (f, xl ,  ... , x , - 2 ,  l), 
where f and l are non-adjacent vertices with 

d ( f )  + d(l) + max{za(f, l), za( l , f )}  >>- n. 

Then there is an integer i, 1 <<. i <<. n - 3, such that (f, xi+~), (x ,  l ) eE(G)  and G is 
hamiltonian. 

Sketch of Proof. Suppose max{zo(f, l), zG(l,f)} = z~(f, l). We proceed by way 
of contradiction. Then 1 is not adjacent to any vertex from the sets A, B and C, 
where the set A = {x, . I fx , .+~eE(G)},  B = {x, . l fx , .eE(G),  fXr.+lq~E(G), x.,I~E(G)} 
and the set C = {x,.LfxmCE(G), fx.,+ICE(G), xr.lCE(G)}. These sets are obvio- 
usly disjoint. We determine their cardinalities to obtain an upper bound of d(l). 

One can prove that IAI = d ( f ) ,  IBI >lq, d f ,  l) and ICI >labs(~G(f,l) 
- - f l a ( f , l ) -  1). Then d(/)~< I V(G)I - I{l}l - Ihl - Inl - ICl < ~ n -  1 - d ( f ) -  
xG(f, l) = n - 1 - d ( f )  - max{zG(f, l), zz(l,f)}, which is a contradiction. [] 

Lemma 4. Let  G be a 2-connected graph of  order n >~ 3 and let P be a longest path 

in G. I f  

d ( f )  + d(l) + max{za(f, l), zo(l,f)} ~> k, 

then G has a cycle of  length >~ rain{k, n}. 
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Proof. We prove the case max{zG(f / ) ,  ZG(1,f)} = Zo(f / ) ;  the second case is analog- 
ous. Let us distinguish two cases according to k. 

(a) k t> n; let H = (V(P)) .  If the vert icesfand 1 are adjacent, then H is hamiltonian. 
Thus, let f and l are non-adjacent. Since P is a longest path, it holds that 
{ f }wN( f )w{ l }wN(1)  ~_ V(P) ~_ V(G). It follows from Lemma 2 that 
g o ( f  l) ~ gH(f  l) and xo(l , f )  <<. xn(l , f) .  Further, from the same argument, it follows 
that do(f)  = dn(f) ,  do(l) = dn(1). Thus we can apply Lemma 3 to the graph H with its 
hamiltonian path P and deduce that H is hamiltonian (because 

dn( f )  + dn(1) + xn(f,  1) ~ do(f)  + do(l) + xo(f, l) = do(f)  + do(1) + max {xo(f, l), 
Xo(/,f)} i> n). Now, G is either hamiltonian (if V(G) = V(P)) or there is a contradiction 
with the maximality of P (because G is 2-connected and we can prolong the hamil- 
tonian cycle in H to a path of length at least L(P) + 1). 

(b) k < n; assume that L(P) = p. We claim that p >~ k. If this is not the case, then 
p ~< k - 1. Considering the graph H = (V(P))  again, one can obtain a contradiction 
by a way similar to the above case (because I V(H)I ~< k). Thus, it holds that p/> k. 

By Lemma 1 there are paths P1 . . . .  , P,, satisfying the conditions of that Lemma. 
Since P is maximal, it follows that P1 and Pm both have length 1. Choose the minimum 
such m. 

(i) m = 1. Then (f, I)~E(G) and the cycle P.( l , f )  has length p ~> k. 

(ii) rn = 2. Choose the paths P1, P2 so that the length of the path [f2, 11] is as small 
as possible. First suppose that L([f2, ll])/> P -  k + 3 ~> 3. Let H'  be the graph 
induced by the set of vertices V([f l ,  s(f2)])uV([ll , /2]) and H = H' + (s(f2), ll). The 
order of H is at most I V(P)I - I V([s(s(f2)), P(/1)])I ~< P + 1 - p + k - 1 = k. From 
the maximality of P and from Lemma 2 it follows that zo( f l ,  12) ~< zn( f l ,  12) and 
Xo(12,fl) ~< Xu(/2,fl). Similarly, by the minimality of L([f2, /1])  b o t h f a n d  1 have no 
neighbour in V([s(f2), P(/1)]) and thus dH(fl) = do(f1) and dH(/2) = do(/2). Since the 
verticesf~ and 12 are non-adjacent, by Lemma 3, the g raph /4  with the hamiltonian 
path P' = If1, s(f2)] • (s(f2), 11)" [11,/2] contains vertices x and s(x) and edges (fl ,  s(x)) 
and (x,/2). It holds that x ¢: s(f2) since s(f2) is non-adjacent to 12 = 1 in G. Therefore 
the successor of x in P is the same as the successor of x in P'. Moreover, (fl, s(x)), 
(x, I2)EE(G) as well. But then P[ = (f, s(x)) and P; = (x, l) are paths satisfying the 
conditions of Lemma with L([J~,/'1]) = 1, contradicting the choice of P~ and P2- 
Therefore it must hold that L([f2,/1])  ~ < p -  k + 2. Then the cycle 

P1 "[11, 12] "/52" [f l , f2]  has length at least [ V([I1, lz])l +lV([ f l , f z ] ) l  ~ k. 

(iii) m 1> 3. Let J, K be the sets of vertices adjacent to f, l, respectively. From the 
minimality of rn it holds that ueJ=~u<~,s( f3)  and veK=:'p(Im-2)<ev. Choose 
P1, P,. so that L([f l , /1])  and L([fm,/,,]) are as small as possible. I fm is odd, then the 

cycle C = PI" [/~,f3] "P3" [/3,f5] . . . . .  [lm- 2,f,,] " P,," [l,,- 1, l,]" Pro- 1" [lm- 3,fro- I)" 
P,,-3 . . . . .  P---~'~f2] has length at least k. If m is even, then the cycle 

C = P1'  [/1,f33 "P3 "[13,f53 . . . . .  Pro-1 "El,,,-1, lm] "P--'m" [Im-z,f , ,] 'Pm-2 . . . . .  -P~2. 
has length at least k. Indeed, in both cases these cycles contain all vertices of 

X =  V(Efl , fz])wV(Ell , f3])  and Y =  V(El,,,-2,f,,,])wV(El,,,_l, lm]). Moreover, by 
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minimality of L ( [ f l ,  ll]), L([fm, l,,]), and minimali ty of m it holds that  J _~ X and 

K _~ Y. Since m >/3, I J ~ K I  ~< 1, and thus abs(a~( f  l) - fiG(f, l) - 1) = 0. One  can 
observe that  if IJc~KI = 1 ([Jc~KI = 0) and ~a( f ,  l) = r, then there are at least r - 1 

(r - 2) vertices from X - {f, l} which are adjacent neither to f nor  I. F r o m  all these 

facts we can claim that  I V(C)I is at least 

1 i f l J ~ K ]  = 1: I{f} l  + [J[ + [{/}l + [K[ - 1 + ~,~(f,  1) - 1 ~> d ( f )  + d(l) + 

max {zo(f,  l), Zo(l ,f)}/> k; 
2 iflJc~KI = 0: l{f}l + [J[ + I{/}[ + ]KI + ~kG(f l ) - -  2 >~ d( f )  + d(l) + max{zG(f  I), 

zG(l,f)} ~ k. 
This proves the Lemma. [ ]  

Corollary 1. Let  G be a 2-connected graph of  order n >>. 3 and let P be a longest path in 

G. I f  

d ( f )  + d(l) >>. k - ~o(G), 

then G has a cycle of  length >>. min{k, n}. 

Proof. If the ve r t i c e s f a nd  I were adjacent, then either G would be hamil tonian or  it 

would follow from 2-connectivity of G that P is not  the longest path. Thus we can 

assume t h a t f a n d  1 are non-adjacent  and use Lemma 4. [ ]  

Remark  1. Finally, it should be noted that the condit ion P is a new condit ion in the 

sense that  there are hamil tonian graphs which satisfy P(n), but fail to satisfy PC(n). In 

order  to show this, we define for each p >/4  a class ~p of  graphs of order  2p: + 2p + 1. 

Let the graph HI  consist of p +  1 copies of Kp+l  with the vertex sets 

{l l l , i ,  U2, i . . . . .  Up+l,i} for i = 1, 2 . . . . .  p + 1, and of p2 vertices vl, v2, ... ,vp2, and all 

edges V~Uk,~, where j  = 1, 2, . . .  ,p2,  k = 2, 3 . . . . .  p + 1 and 1 = 1, 2 . . . . .  p + 1. Let S be 

the set of all graphs with min imum degree ) p 2  p + 1 on the vertex set 

{Vl, v2 . . . . .  Vp2}. Finally, for p ~> 4 let us define ~p = {GIG = HlWH2,  H2ES}.  
For  a graph G from ~p it is an easy but time consuming exercise to observe that 

~o(G) = 1 and that  G satisfies the condit ion P(n). But PC(n) is not  satisfied because 

u2, 1 and u2,2 lie in an induced K1,3, but  both  are of degree p2 + p. 
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