14 research outputs found

    Qualitative and quantitative analysis of solar hydrogen generation literature from 2001 to 2014

    Get PDF
    Solar hydrogen generation is one of the new topics in the field of renewable energy. Recently, the rate of investigation about hydrogen generation is growing dramatically in many countries. Many studies have been done about hydrogen generation from natural resources such as wind, solar, coal etc. In this work we evaluated global scientific production of solar hydrogen generation papers from 2001 to 2014 in any journal of all the subject categories of the Science Citation Index compiled by Institute for Scientific Information (ISI), Philadelphia, USA. Solar hydrogen generation was used as keywords to search the parts of titles, abstracts, or keywords. The published output analysis showed that hydrogen generation from the sun research steadily increased over the past 14 years and the annual paper production in 2013 was about three times 2010-paper production. The number of papers considered in this research is 141 which have been published from 2001 to this date. There are clear distinctions among author keywords used in publications from the five most high-publishing countries such as USA, China, Australia, Germany and India in solar hydrogen studies. In order to evaluate this work quantitative and qualitative analysis methods were used to the development of global scientific production in a specific research field. The analytical results eventually provide several key findings and consider the overview hydrogen production according to the solar hydrogen generation

    Study of the somaclonal variation produced by different methods of polyploidization in Asparagus officinalis L.

    Get PDF
    Polyploid plants have been induced in different Asparagus officinalis L. breeding programs in order to obtain plants with improved agronomical traits, such as large spear diameter or segregation ratios with a higher number of males. The polyploidization methods can produce somaclonal variation in the polyploid plants obtained and, therefore, unwanted changes in the agronomical traits of the initial elite plants. We used two different polyploidization methods to induce polyploid plants from diploid genotypes of commercial varieties and tetraploid genotypes of the Spanish landrace “Morado de Huétor”. The first method was the culture of rhizome buds in the medium ARBM-3 (Asparagus Rhizome Bud Medium), supplemented with different concentrations of colchicine (0.1–0.75 g l−1) for 10 and 20 days. The best polyploidization rate obtained was 25 % (0.5 g l−1 colchicine for 10 days). The second method was the regeneration of polyploid plants from callus culture, resulting in a polyploidization rate of 40 and 12.5 % for the diploid genotype CM077 and the tetraploid genotype HT156, respectively. Additionally, we have developed a new protocol to separate the mixoploids generated into their different genetic components, obtaining plants with a unique ploidy level. EST-SSRs markers were employed to analyze the genetic stability of polyploidy plants. Somaclonal variation was not detected for polyploidy plants obtained through the culture of rhizome bud explants. Therefore, these polyploid plants should maintain the agronomical traits of the initial elite plants. However, somaclonal variation was detected in the polyploid plants regenerated from callus culture.Fil: Regalado González, Jose Javier. Instituto de Horticultura Subtropical y Mediterránea La Mayora; España. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Carmona Martín, E.. Instituto de Horticultura Subtropical y Mediterránea La Mayora; EspañaFil: Castro, P.. Universidad de Córdoba; EspañaFil: Moreno, R.. Universidad de Córdoba; EspañaFil: Gil, J.. Universidad de Córdoba; EspañaFil: Encina, C. L.. Instituto de Horticultura Subtropical y Mediterránea La Mayora; Españ
    corecore