23 research outputs found

    Fructose-Bisphophate Aldolase Exhibits Functional Roles between Carbon Metabolism and the hrp System in Rice Pathogen Xanthomonas oryzae pv. oryzicola

    Get PDF
    Fructose-bisphophate aldolase (FbaB), is an enzyme in glycolysis and gluconeogenesis in living organisms. The mutagenesis in a unique fbaB gene of Xanthomonas oryzae pv. oryzicola, the causal agent of rice bacterial leaf streak, led the pathogen not only unable to use pyruvate and malate for growth and delayed its growth when fructose was used as the sole carbon source, but also reduced extracellular polysaccharide (EPS) production and impaired bacterial virulence and growth in rice. Intriguingly, the fbaB promoter contains an imperfect PIP-box (plant-inducible promoter) (TTCGT-N9-TTCGT). The expression of fbaB was negatively regulated by a key hrp regulatory HrpG and HrpX cascade. Base substitution in the PIP-box altered the regulation of fbaB with the cascade. Furthermore, the expression of fbaB in X. oryzae pv. oryzicola RS105 strain was inducible in planta rather than in a nutrient-rich medium. Except other hrp-hrc-hpa genes, the expression of hrpG and hrpX was repressed and the transcripts of hrcC, hrpE and hpa3 were enhanced when fbaB was deleted. The mutation in hrcC, hrpE or hpa3 reduced the ability of the pathogen to acquire pyruvate and malate. In addition, bacterial virulence and growth in planta and EPS production in RΔfbaB mutant were completely restored to the wild-type level by the presence of fbaB in trans. This is the first report to demonstrate that carbohydrates, assimilated by X. oryzae pv. oryzicola, play critical roles in coordinating hrp gene expression through a yet unknown regulator

    Reconstruction of metabolic pathways for the cattle genome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Metabolic reconstruction of microbial, plant and animal genomes is a necessary step toward understanding the evolutionary origins of metabolism and species-specific adaptive traits. The aims of this study were to reconstruct conserved metabolic pathways in the cattle genome and to identify metabolic pathways with missing genes and proteins. The MetaCyc database and PathwayTools software suite were chosen for this work because they are widely used and easy to implement.</p> <p>Results</p> <p>An amalgamated cattle genome database was created using the NCBI and Ensembl cattle genome databases (based on build 3.1) as data sources. PathwayTools was used to create a cattle-specific pathway genome database, which was followed by comprehensive manual curation for the reconstruction of metabolic pathways. The curated database, CattleCyc 1.0, consists of 217 metabolic pathways. A total of 64 mammalian-specific metabolic pathways were modified from the reference pathways in MetaCyc, and two pathways previously identified but missing from MetaCyc were added. Comparative analysis of metabolic pathways revealed the absence of mammalian genes for 22 metabolic enzymes whose activity was reported in the literature. We also identified six human metabolic protein-coding genes for which the cattle ortholog is missing from the sequence assembly.</p> <p>Conclusion</p> <p>CattleCyc is a powerful tool for understanding the biology of ruminants and other cetartiodactyl species. In addition, the approach used to develop CattleCyc provides a framework for the metabolic reconstruction of other newly sequenced mammalian genomes. It is clear that metabolic pathway analysis strongly reflects the quality of the underlying genome annotations. Thus, having well-annotated genomes from many mammalian species hosted in BioCyc will facilitate the comparative analysis of metabolic pathways among different species and a systems approach to comparative physiology.</p

    Sibling recognition in thirteen-lined ground squirrels: effects of genetic relatedness, rearing association, and olfaction

    Full text link
    I investigated sibling-sibling recognition in captive thirteen-lined ground squirrels ( Spermophilus tridecemlineatus ) by cross-fostering lab-born pups shortly after birth. When young reached about 45 days of age, I observed dyadic interactions in a test arena of pairs from four relatedness X rearing groups, and recorded the frequency of “exploratory” encounters between individuals. Sibs-reared together and nonsibs-reared together exhibited significantly fewer exploratory encounters than either sibs-reared apart or nonsibsreared apart. Young reared together were equally exploratory, regadless of relatedness; similarly, young reared apart, whether they were sibs or nonsibs, showed similar levels of exploration. Thus, the differential treatment of siblings in the lab appears to be based on rearing association and not genetic relatedness per se. I interpret this recognition based on association (rearing familiarity) in the context of the species' social organization and compare my results on S. tridecemlineatus with similar studies on S. beldingi, S. parryii , and S. richardsonii . I also used an olfactory impairment technique (zinc sulfate) and found that differential treatment in thirteen-lined ground squirrels was influenced by olfactory cues.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46871/1/265_2004_Article_BF00299622.pd

    Prenatal exposure to TCDD and atopic conditions in the Seveso second generation: a prospective cohort study

    Get PDF
    Abstract Background 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a toxic environmental contaminant that can bioaccumulate in humans, cross the placenta, and cause immunological effects in children, including altering their risk of developing allergies. On July 10, 1976, a chemical explosion in Seveso, Italy, exposed nearby residents to a high amount of TCDD. In 1996, the Seveso Women’s Health Study (SWHS) was established to study the effects of TCDD on women’s health. Using data from the Seveso Second Generation Health Study, we aim to examine the effect of prenatal exposure to TCDD on the risk of atopic conditions in SWHS children born after the explosion. Methods Individual-level TCDD was measured in maternal serum collected soon after the accident. In 2014, we initiated the Seveso Second Generation Health Study to follow-up the children of the SWHS cohort who were born after the explosion or who were exposed in utero to TCDD. We enrolled 677 children, and cases of atopic conditions, including eczema, asthma, and hay fever, were identified by self-report during personal interviews with the mothers and children. Log-binomial and Poisson regressions were used to determine the association between prenatal TCDD and atopic conditions. Results A 10-fold increase in 1976 maternal serum TCDD (log10TCDD) was not significantly associated with asthma (adjusted relative risk (RR) = 0.93; 95% CI: 0.61, 1.40) or hay fever (adjusted RR = 0.99; 95% CI: 0.76, 1.27), but was significantly inversely associated with eczema (adjusted RR = 0.63; 95% CI: 0.40, 0.99). Maternal TCDD estimated at pregnancy was not significantly associated with eczema, asthma, or hay fever. There was no strong evidence of effect modification by child sex. Conclusions Our results suggest that maternal serum TCDD near the time of explosion is associated with lower risk of eczema, which supports other evidence pointing to the dysregulated immune effects of TCDD

    Pheromones in birds: myth or reality?

    Get PDF
    Birds are anosmic or at best microsmatic... This misbelief persisted until very recently and has strongly influenced the outcome of communication studies in birds, with olfaction remaining neglected as compared to acoustic and visual channels. However, there is now clear empirical evidence showing that olfaction is perfectly functional in birds and birds use olfactory information in a variety of ethological contexts. Although the existence of pheromones has never been formally demonstrated in this vertebrate class, different groups of birds, such as petrels, auklets and ducks have been shown to produce specific scents that could play a significant role in within-species social interactions. Behavioral experiments have indeed demonstrated that these odors influence the behavior of conspecifics. Additionally, in quail, deprivation of olfactory inputs decreases neuronal activation induced by sexual interactions with a female. It seems therefore well established that birds enjoy a functional sense of smell and a fast growing body of experimental evidence suggests that they use this channel of olfactory communication to control their social life. The unequivocal identification of an avian pheromone is, however, still ahead of us but there are now many exciting opportunities to unravel the behavioral and physiological particularities of chemical communication in birds
    corecore