21 research outputs found
Кераміка для техніки
The benthic invertebrates fauna of most of the saline lakes of the Sud Lipez region (Bolivia, Altiplano) has been until now quite unstudied. Samples collected during an extensive survey of 12 lakes and two small inflow rivers allow a first list of the main macroinvertebrates living in the biotopes. The heterogeneous nature of these saline lakes with their freshwater springs and phreatic inflows offers a variety of habitats to macroinvertebrates. The benthic fauna in lakes with salinity > 10 g l-1 is not so low in density but includes few species and is dominated by Orthocladinae and Podonominae larvae. In contrast, the freshwater springs and inflows are colonized by a diverse fauna with a mixture of both freshwater and saline taxa, but dominated by Elmidae and Amphipoda. The lakes are quite isolated and, apart from some cosmopolitan organisms, their fauna can be quite distinctive. (Résumé d'auteur
Distribution, Abundance and Molecular Analysis of Genus Barbadocladius Cranston & Krosch (Diptera, Chironomidae) in Tropical, High Altitude Andean Streams and Rivers
The distribution of the genus Barbadocladius Cranston & Krosch (Diptera: Chironomidae), previously reported from Chile to Bolivia, has extended northwards. Larvae, pupae and pupal exuviae of this genus have been found in the high mountain tropical streams of Peru to 9°22′56″, but are restricted to very high altitude streams (altitudes over 3,278 m asl) compared to the lower altitude streams (below 1,100 m asl) in which the genus is reported in Chile and Argentina. Based on morphological studies, both described species in the genus, Barbadocladius andinus Cranston & Krosch and Barbadocladius limay Cranston & Krosch, have been found in Peru as pupae or pupal exuviae. Morphological analysis of the larvae and pupae revealed no differences between the two described species from Patagonia and Peru, which are of similar size and with a similar armament of hooklets and spines in pupal tergites and sternites. However, molecular analysis of larvae and pupae revealed that in Peru, there are at least two different evolutionary lines, one distributed widely and another restricted to one site. Phylogenetic analysis (using cox1 mitochondrial sequences) of all available sequences of Barbadocladius shows that the Chilean and Argentinean material differs from that of Peru. Therefore, a total of four molecular segregates are identified, although morphologically, neither larvae nor the pupae may be differentiated
An Anaerobic-Type α-Ketoglutarate Ferredoxin Oxidoreductase Completes the Oxidative Tricarboxylic Acid Cycle of Mycobacterium tuberculosis
Aerobic organisms have a tricarboxylic acid (TCA) cycle that is functionally distinct from those found in anaerobic organisms. Previous reports indicate that the aerobic pathogen Mycobacterium tuberculosis lacks detectable α-ketoglutarate (KG) dehydrogenase activity and drives a variant TCA cycle in which succinyl-CoA is replaced by succinic semialdehyde. Here, we show that M. tuberculosis expresses a CoA-dependent KG dehydrogenase activity, albeit one that is typically found in anaerobic bacteria. Unlike most enzymes of this family, the M. tuberculosis KG: ferredoxin oxidoreductase (KOR) is extremely stable under aerobic conditions. This activity is absent in a mutant strain deleted for genes encoding a previously uncharacterized oxidoreductase, and this strain is impaired for aerobic growth in the absence of sufficient amounts of CO2. Interestingly, inhibition of the glyoxylate shunt or exclusion of exogenous fatty acids alleviates this growth defect, indicating the presence of an alternate pathway that operates in the absence of β-oxidation. Simultaneous disruption of KOR and the first enzyme of the succinic semialdehyde pathway (KG decarboxylase; KGD) results in strict dependence upon the glyoxylate shunt for growth, demonstrating that KG decarboxylase is also functional in M. tuberculosis intermediary metabolism. These observations demonstrate that unlike most organisms M. tuberculosis utilizes two distinct TCA pathways from KG, one that functions concurrently with β-oxidation (KOR-dependent), and one that functions in the absence of β-oxidation (KGD-dependent). As these pathways are regulated by metabolic cues, we predict that their differential utilization provides an advantage for growth in different environments within the host
James A.g. Rehn And The American Entomological Society
Volume: 95Start Page: 163End Page: 16