553 research outputs found

    Long-term high frequency monitoring of a large borehole heat exchanger array

    Get PDF
    Borehole heat exchangers are a key technological element of geothermal energy systems and modelling their behaviour has received much attention. The aim in the work reported here has been to produce a reference data set that can be used in analysis of large borehole heat exchanger systems and validation of models of such. A monitoring exercise to collect high frequency data from a large ground heat exchanger array consisting of 56 boreholes over 38 months since the start of operations is reported. The system is associated with a mixed-use university building that has both heating and cooling loads. Ground heat exchange was found to be dominated by rejection of heat over the monitoring period and modest seasonal increases in temperatures. The ground heat exchanger installation has been additionally characterised by analysis of thermal response test data to estimate the effective ground and grout thermal properties. The utility of the measurements as a reference data set by presenting a model validation study is furthermore demonstrated. This has highlighted some features of the data that are more significant in systems of larger scale. These reference data are being made openly available for further work on performance analysis and model validation

    Fermion correlators in non-abelian holographic superconductors

    Full text link
    We consider fermion correlators in non-abelian holographic superconductors. The spectral function of the fermions exhibits several interesting features such as support in displaced Dirac cones and an asymmetric distribution of normal modes. These features are compared to similar ones observed in angle resolved photoemission experiments on high T_c superconductors. Along the way we elucidate some properties of p-wave superconductors in AdS_4 and discuss the construction of SO(4) superconductors.Comment: 49 pages, 11 figure

    Visual population receptive fields in people with schizophrenia have reduced inhibitory surrounds

    Get PDF
    People with schizophrenia (SZ) experience abnormal visual perception on a range of visual tasks, which have been linked to abnormal synaptic transmission and an imbalance between cortical excitation and inhibition. However differences in the underlying architecture of visual cortex neurons, which might explain these visual anomalies, have yet to be reported in vivo. Here, we probe the neural basis of these deficits by using functional MRI (fMRI) and population receptive field (pRF) mapping to infer properties of visually responsive neurons in people with SZ. We employed a Difference-of-Gaussian (DoG) model to capture the centre-surround configuration of the pRF, providing critical information about the spatial scale of the pRFs inhibitory surround. Our analysis reveals that SZ is associated with reduced pRF size in early retinotopic visual cortex as well as a reduction in size and depth of the inhibitory surround in V1, V2 and V4. We consider how reduced inhibition might explain the diverse range of visual deficits reported in SZ. SIGNIFICANCE STATEMENT: People with schizophrenia (SZ) experience abnormal perception on a range of visual tasks, which has been linked to abnormal synaptic transmission and an imbalance between cortical excitation/inhibition. However associated differences in the underlying architecture of visual cortex neurons have yet to be reported in vivo. We used fMRI and population receptive field (pRF) mapping to demonstrate that the fine-grained functional architecture of visual cortex in people with SZ differs from unaffected controls. SZ is associated with reduced pRF size in early retinotopic visual cortex, largely due to reduced inhibitory surrounds. An imbalance between cortical excitation and inhibition could drive such a change in the centre-surround pRF configuration, and ultimately explain the range of visual deficits experienced in SZ

    Classifying global catastrophic risks

    Get PDF
    We present a novel classification framework for severe global catastrophic risk scenarios. Extending beyond existing work that identifies individual risk scenarios, we propose analysing global catastrophic risks along three dimensions: the critical systems affected, global spread mechanisms, and prevention and mitigation failures. The classification highlights areas of convergence between risk scenarios, which supports prioritisation of particular research and of policy interventions. It also points to potential knowledge gaps regarding catastrophic risks, and provides an interdisciplinary structure for mapping and tracking the multitude of factors that could contribute to global catastrophic risks

    Zero Sound in Strange Metallic Holography

    Full text link
    One way to model the strange metal phase of certain materials is via a holographic description in terms of probe D-branes in a Lifshitz spacetime, characterised by a dynamical exponent z. The background geometry is dual to a strongly-interacting quantum critical theory while the probe D-branes are dual to a finite density of charge carriers that can exhibit the characteristic properties of strange metals. We compute holographically the low-frequency and low-momentum form of the charge density and current retarded Green's functions in these systems for massless charge carriers. The results reveal a quasi-particle excitation when z<2, which in analogy with Landau Fermi liquids we call zero sound. The real part of the dispersion relation depends on momentum k linearly, while the imaginary part goes as k^2/z. When z is greater than or equal to 2 the zero sound is not a well-defined quasi-particle. We also compute the frequency-dependent conductivity in arbitrary spacetime dimensions. Using that as a measure of the charge current spectral function, we find that the zero sound appears only when the spectral function consists of a single delta function at zero frequency.Comment: 20 pages, v2 minor corrections, extended discussion in sections 5 and 6, added one footnote and four references, version published in JHE

    Lepton Acceleration in Pulsar Wind Nebulae

    Full text link
    Pulsar Wind Nebulae (PWNe) act as calorimeters for the relativistic pair winds emanating from within the pulsar light cylinder. Their radiative dissipation in various wavebands is significantly different from that of their pulsar central engines: the broadband spectra of PWNe possess characteristics distinct from those of pulsars, thereby demanding a site of lepton acceleration remote from the pulsar magnetosphere. A principal candidate for this locale is the pulsar wind termination shock, a putatively highly-oblique, ultra-relativistic MHD discontinuity. This paper summarizes key characteristics of relativistic shock acceleration germane to PWNe, using predominantly Monte Carlo simulation techniques that compare well with semi-analytic solutions of the diffusion-convection equation. The array of potential spectral indices for the pair distribution function is explored, defining how these depend critically on the parameters of the turbulent plasma in the shock environs. Injection efficiencies into the acceleration process are also addressed. Informative constraints on the frequency of particle scattering and the level of field turbulence are identified using the multiwavelength observations of selected PWNe. These suggest that the termination shock can be comfortably invoked as a principal injector of energetic leptons into PWNe without resorting to unrealistic properties for the shock layer turbulence or MHD structure.Comment: 19 pages, 5 figures, invited review to appear in Proc. of the inaugural ICREA Workshop on "The High-Energy Emission from Pulsars and their Systems" (2010), eds. N. Rea and D. Torres, (Springer Astrophysics and Space Science series

    Neuroinflammation and structural injury of the fetal ovine brain following intra-amniotic Candida albicans exposure.

    Get PDF
    BackgroundIntra-amniotic Candida albicans (C. Albicans) infection is associated with preterm birth and high morbidity and mortality rates. Survivors are prone to adverse neurodevelopmental outcomes. The mechanisms leading to these adverse neonatal brain outcomes remain largely unknown. To better understand the mechanisms underlying C. albicans-induced fetal brain injury, we studied immunological responses and structural changes of the fetal brain in a well-established translational ovine model of intra-amniotic C. albicans infection. In addition, we tested whether these potential adverse outcomes of the fetal brain were improved in utero by antifungal treatment with fluconazole.MethodsPregnant ewes received an intra-amniotic injection of 10(7) colony-forming units C. albicans or saline (controls) at 3 or 5 days before preterm delivery at 0.8 of gestation (term ~ 150 days). Fetal intra-amniotic/intra-peritoneal injections of fluconazole or saline (controls) were administered 2 days after C. albicans exposure. Post mortem analyses for fungal burden, peripheral immune activation, neuroinflammation, and white matter/neuronal injury were performed to determine the effects of intra-amniotic C. albicans and fluconazole treatment.ResultsIntra-amniotic exposure to C. albicans caused a severe systemic inflammatory response, illustrated by a robust increase of plasma interleukin-6 concentrations. Cerebrospinal fluid cultures were positive for C. albicans in the majority of the 3-day C. albicans-exposed animals whereas no positive cultures were present in the 5-day C. albicans-exposed and fluconazole-treated animals. Although C. albicans was not detected in the brain parenchyma, a neuroinflammatory response in the hippocampus and white matter was seen which was characterized by increased microglial and astrocyte activation. These neuroinflammatory changes were accompanied by structural white matter injury. Intra-amniotic fluconazole reduced fetal mortality but did not attenuate neuroinflammation and white matter injury.ConclusionsIntra-amniotic C. albicans exposure provoked acute systemic and neuroinflammatory responses with concomitant white matter injury. Fluconazole treatment prevented systemic inflammation without attenuating cerebral inflammation and injury

    A Blue Spectral Shift of the Hemoglobin Soret Band Correlates with the Age (Time Since Deposition) of Dried Bloodstains

    Get PDF
    The ability to determine the time since deposition of a bloodstain found at a crime scene could prove invaluable to law enforcement investigators, defining the time frame in which the individual depositing the evidence was present. Although various methods of accomplishing this have been proposed, none has gained widespread use due to poor time resolution and weak age correlation. We have developed a method for the estimation of the time since deposition (TSD) of dried bloodstains using UV-VIS spectrophotometric analysis of hemoglobin (Hb) that is based upon its characteristic oxidation chemistry. A detailed study of the Hb Soret band (λmax = 412 nm) in aged bloodstains revealed a blue shift (shift to shorter wavelength) as the age of the stain increases. The extent of this shift permits, for the first time, a distinction to be made between bloodstains that were deposited minutes, hours, days and weeks prior to recovery and analysis. The extent of the blue shift was found to be a function of ambient relative humidity and temperature. The method is extremely sensitive, requiring as little as a 1 µl dried bloodstain for analysis. We demonstrate that it might be possible to perform TSD measurements at the crime scene using a portable low-sample-volume spectrophotometer
    • …
    corecore