799 research outputs found

    Stability analysis of non-autonomous reaction-diffusion systems: the effects of growing domains

    Get PDF
    By using asymptotic theory, we generalise the Turing diffusively-driven instability conditions for reaction-diffusion systems with slow, isotropic domain growth. There are two fundamental biological differences between the Turing conditions on fixed and growing domains, namely: (i) we need not enforce cross nor pure kinetic conditions and (ii) the restriction to activator-inhibitor kinetics to induce pattern formation on a growing biological system is no longer a requirement. Our theoretical findings are confirmed and reinforced by numerical simulations for the special cases of isotropic linear, exponential and logistic growth profiles. In particular we illustrate an example of a reaction-diffusion system which cannot exhibit a diffusively-driven instability on a fixed domain but is unstable in the presence of slow growth

    Sexually transmitted infections: challenges ahead.

    Get PDF
    : WHO estimated that nearly 1 million people become infected every day with any of four curable sexually transmitted infections (STIs): chlamydia, gonorrhoea, syphilis, and trichomoniasis. Despite their high global incidence, STIs remain a neglected area of research. In this Commission, we have prioritised five areas that represent particular challenges in STI treatment and control. Chlamydia remains the most commonly diagnosed bacterial STI in high-income countries despite widespread testing recommendations, sensitive and specific non-invasive testing techniques, and cheap effective therapy. We discuss the challenges for chlamydia control and evidence to support a shift from the current focus on infection-based screening to improved management of diagnosed cases and of chlamydial morbidity, such as pelvic inflammatory disease. The emergence and spread of antimicrobial resistance in Neisseria gonorrhoeae is globally recognised. We review current and potential future control and treatment strategies, with a focus on novel antimicrobials. Bacterial vaginosis is the most common vaginal disorder in women, but current treatments are associated with frequent recurrence. Recurrence after treatment might relate to evidence that suggests sexual transmission is integral to the pathogenesis of bacterial vaginosis, which has substantial implications for the development of effective management approaches. STIs disproportionately affect low-income and middle-income countries. We review strategies for case management, focusing on point-of-care tests that hold considerable potential for improving STI control. Lastly, STIs in men who have sex with men have increased since the late 1990s. We discuss the contribution of new biomedical HIV prevention strategies and risk compensation. Overall, this Commission aims to enhance the understanding of some of the key challenges facing the field of STIs, and outlines new approaches to improve the clinical management of STIs and public health.<br/

    SPECULOOS exoplanet search and its prototype on TRAPPIST

    Full text link
    One of the most significant goals of modern science is establishing whether life exists around other suns. The most direct path towards its achievement is the detection and atmospheric characterization of terrestrial exoplanets with potentially habitable surface conditions. The nearest ultracool dwarfs (UCDs), i.e. very-low-mass stars and brown dwarfs with effective temperatures lower than 2700 K, represent a unique opportunity to reach this goal within the next decade. The potential of the transit method for detecting potentially habitable Earth-sized planets around these objects is drastically increased compared to Earth-Sun analogs. Furthermore, only a terrestrial planet transiting a nearby UCD would be amenable for a thorough atmospheric characterization, including the search for possible biosignatures, with near-future facilities such as the James Webb Space Telescope. In this chapter, we first describe the physical properties of UCDs as well as the unique potential they offer for the detection of potentially habitable Earth-sized planets suitable for atmospheric characterization. Then, we present the SPECULOOS ground-based transit survey, that will search for Earth-sized planets transiting the nearest UCDs, as well as its prototype survey on the TRAPPIST telescopes. We conclude by discussing the prospects offered by the recent detection by this prototype survey of a system of seven temperate Earth-sized planets transiting a nearby UCD, TRAPPIST-1.Comment: Submitted as a chapter in the "Handbook of Exoplanets" (editors: H. Deeg & J.A. Belmonte; Section Editor: N. Narita). 16 pages, 4 figure

    Bio-nanotechnology application in wastewater treatment

    Get PDF
    The nanoparticles have received high interest in the field of medicine and water purification, however, the nanomaterials produced by chemical and physical methods are considered hazardous, expensive, and leave behind harmful substances to the environment. This chapter aimed to focus on green-synthesized nanoparticles and their medical applications. Moreover, the chapter highlighted the applicability of the metallic nanoparticles (MNPs) in the inactivation of microbial cells due to their high surface and small particle size. Modifying nanomaterials produced by green-methods is safe, inexpensive, and easy. Therefore, the control and modification of nanoparticles and their properties were also discussed

    Assessing the role of undetected colonization and isolation precautions in reducing Methicillin-Resistant Staphylococcus aureus transmission in intensive care units

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Screening and isolation are central components of hospital methicillin-resistant <it>Staphylococcus aureus </it>(MRSA) control policies. Their prevention of patient-to-patient spread depends on minimizing undetected and unisolated MRSA-positive patient days. Estimating these MRSA-positive patient days and the reduction in transmission due to isolation presents a major methodological challenge, but is essential for assessing both the value of existing control policies and the potential benefit of new rapid MRSA detection technologies. Recent methodological developments have made it possible to estimate these quantities using routine surveillance data.</p> <p>Methods</p> <p>Colonization data from admission and weekly nares cultures were collected from eight single-bed adult intensive care units (ICUs) over 17 months. Detected MRSA-positive patients were isolated using single rooms and barrier precautions. Data were analyzed using stochastic transmission models and model fitting was performed within a Bayesian framework using a Markov chain Monte Carlo algorithm, imputing unobserved MRSA carriage events.</p> <p>Results</p> <p>Models estimated the mean percent of colonized-patient-days attributed to undetected carriers as 14.1% (95% CI (11.7, 16.5)) averaged across ICUs. The percent of colonized-patient-days attributed to patients awaiting results averaged 7.8% (6.2, 9.2). Overall, the ratio of estimated transmission rates from unisolated MRSA-positive patients and those under barrier precautions was 1.34 (0.45, 3.97), but varied widely across ICUs.</p> <p>Conclusions</p> <p>Screening consistently detected >80% of colonized-patient-days. Estimates of the effectiveness of barrier precautions showed considerable uncertainty, but in all units except burns/general surgery and one cardiac surgery ICU, the best estimates were consistent with reductions in transmission associated with barrier precautions.</p

    Matched sizes of activating and inhibitory receptor/ligand pairs are required for optimal signal integration by human Natural Killer cells

    Get PDF
    It has been suggested that receptor-ligand complexes segregate or co-localise within immune synapses according to their size, and this is important for receptor signaling. Here, we set out to test the importance of receptor-ligand complex dimensions for immune surveillance of target cells by human Natural Killer (NK) cells. NK cell activation is regulated by integrating signals from activating receptors, such as NKG2D, and inhibitory receptors, such as KIR2DL1. Elongating the NKG2D ligand MICA reduced its ability to trigger NK cell activation. Conversely, elongation of KIR2DL1 ligand HLA-C reduced its ability to inhibit NK cells. Whereas normal-sized HLA-C was most effective at inhibiting activation by normal-length MICA, only elongated HLA-C could inhibit activation by elongated MICA. Moreover, HLA-C and MICA that were matched in size co-localised, whereas HLA-C and MICA that were different in size were segregated. These results demonstrate that receptor-ligand dimensions are important in NK cell recognition, and suggest that optimal integration of activating and inhibitory receptor signals requires the receptor-ligand complexes to have similar dimensions

    The dynamics of human body weight change

    Get PDF
    An imbalance between energy intake and energy expenditure will lead to a change in body weight (mass) and body composition (fat and lean masses). A quantitative understanding of the processes involved, which currently remains lacking, will be useful in determining the etiology and treatment of obesity and other conditions resulting from prolonged energy imbalance. Here, we show that the long-term dynamics of human weight change can be captured by a mathematical model of the macronutrient flux balances and all previous models are special cases of this model. We show that the generic dynamical behavior of body composition for a clamped diet can be divided into two classes. In the first class, the body composition and mass are determined uniquely. In the second class, the body composition can exist at an infinite number of possible states. Surprisingly, perturbations of dietary energy intake or energy expenditure can give identical responses in both model classes and existing data are insufficient to distinguish between these two possibilities. However, this distinction is important for the efficacy of clinical interventions that alter body composition and mass

    Genetic determinants of co-accessible chromatin regions in activated T cells across humans.

    Get PDF
    Over 90% of genetic variants associated with complex human traits map to non-coding regions, but little is understood about how they modulate gene regulation in health and disease. One possible mechanism is that genetic variants affect the activity of one or more cis-regulatory elements leading to gene expression variation in specific cell types. To identify such cases, we analyzed ATAC-seq and RNA-seq profiles from stimulated primary CD4+ T cells in up to 105 healthy donors. We found that regions of accessible chromatin (ATAC-peaks) are co-accessible at kilobase and megabase resolution, consistent with the three-dimensional chromatin organization measured by in situ Hi-C in T cells. Fifteen percent of genetic variants located within ATAC-peaks affected the accessibility of the corresponding peak (local-ATAC-QTLs). Local-ATAC-QTLs have the largest effects on co-accessible peaks, are associated with gene expression and are enriched for autoimmune disease variants. Our results provide insights into how natural genetic variants modulate cis-regulatory elements, in isolation or in concert, to influence gene expression

    Clinical trials update of the European Organization for Research and Treatment of Cancer Breast Cancer Group

    Get PDF
    The present clinical trial update consists of a review of two of eight current studies (the 10981-22023 AMAROS trial and the 10994 p53 trial) of the European Organization for Research and Treatment of Cancer Breast Cancer Group, as well as a preview of the MIND-ACT trial. The AMAROS trial is designed to prove equivalent local/regional control for patients with proven axillary lymph node metastasis by sentinel node biopsy if treated with axillary radiotherapy instead of axillary lymph node dissection, with reduced morbidity. The p53 trial started to assess the potential predictive value of p53 using a functional assay in yeast in patients with locally advanced/inflammatory or large operable breast cancer prospectively randomised to a taxane regimen versus a nontaxane regimen

    Thermal Properties of Graphene, Carbon Nanotubes and Nanostructured Carbon Materials

    Full text link
    Recent years witnessed a rapid growth of interest of scientific and engineering communities to thermal properties of materials. Carbon allotropes and derivatives occupy a unique place in terms of their ability to conduct heat. The room-temperature thermal conductivity of carbon materials span an extraordinary large range - of over five orders of magnitude - from the lowest in amorphous carbons to the highest in graphene and carbon nanotubes. I review thermal and thermoelectric properties of carbon materials focusing on recent results for graphene, carbon nanotubes and nanostructured carbon materials with different degrees of disorder. A special attention is given to the unusual size dependence of heat conduction in two-dimensional crystals and, specifically, in graphene. I also describe prospects of applications of graphene and carbon materials for thermal management of electronics.Comment: Review Paper; 37 manuscript pages; 4 figures and 2 boxe
    corecore