48 research outputs found

    Effects of enamel matrix derivative and transforming growth factor-β1 on human osteoblastic cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Extracellular matrix proteins are key factors that influence the regenerative capacity of tissues. The objective of the present study was to evaluate the effects of enamel matrix derivative (EMD), TGF-β1, and the combination of both factors (EMD+TGF-β1) on human osteoblastic cell cultures.</p> <p>Methods</p> <p>Cells were obtained from alveolar bone of three adult patients using enzymatic digestion. Effects of EMD, TGF-β1, or a combination of both were analyzed on cell proliferation, bone sialoprotein (BSP), osteopontin (OPN) and alkaline phosphatase (ALP) immunodetection, total protein synthesis, ALP activity and bone-like nodule formation.</p> <p>Results</p> <p>All treatments significantly increased cell proliferation compared to the control group at 24 h and 4 days. At day 7, EMD group showed higher cell proliferation compared to TGF-β1, EMD + TGF-β1 and the control group. OPN was detected in the majority of the cells for all groups, whereas fluorescence intensities for ALP labeling were greater in the control than in treated groups; BSP was not detected in all groups. All treatments decreased ALP levels at 7 and 14 days and bone-like nodule formation at 21 days compared to the control group.</p> <p>Conclusions</p> <p>The exposure of human osteoblastic cells to EMD, TGF-β1 and the combination of factors <it>in vitro </it>supports the development of a less differentiated phenotype, with enhanced proliferative activity and total cell number, and reduced ALP activity levels and matrix mineralization.</p

    Effects of enamel matrix proteins on tissue formation along the roots of human teeth

    No full text
    Objective: Enamel matrix-derived proteins (EMD) are thought to trigger the formation of acellular extrinsic fibre cementum (AEFC), while other reports indicate that EMD may have osteogenic potential. The aim of the present study was to characterize the tissues developing on the root surface following application of EMD. Methods: Twelve human periodontitis-affected teeth, scheduled for extraction, were treated with EMD. Two to 6 weeks later, the teeth were extracted, demineralized and processed for embedding in acrylic and epoxy resins. New tissue formation was analysed by light and transmission electron microscopy. Results: New tissue formation on the root was observed in the notch and on both scaled and unscaled root surfaces distant of the notch area in six defects. The newly formed tissues on the root were thick, collagenous, devoid of extrinsic fibres, and had an irregular surface contour. The presence of electron-dense, organic material in the collagenous matrix indicated at least partial mineralization. Embedded cells were numerous and the cells on the matrix surface were very large in size. Abundant rough endoplasmic reticulum and a prominent Golgi complex were evident. The presence of a split between the treated root surfaces and the newly formed tissue was a common observation, as was the presence of bacteria and host cells in the interfacial gap. Conclusion: Following treatment with EMD, a bone-like tissue resembling cellular intrinsic fibre cementum may develop on the root surfaces, instead of AEFC. Furthermore, EMD may both induce de novo formation of a mineralized connective tissue on scaled root surfaces and stimulate matrix deposition on old native cementum. Interfacial bonding appeared to be weak after 6 weeks of healing. Copyright Š Blackwell Munksgaard Ltd.link_to_subscribed_fulltex
    corecore