4,883 research outputs found

    Analytic study of Gauss-Bonnet holographic superconductors in Born-Infeld electrodynamics

    Full text link
    Using Sturm-Liouville (SL) eigenvalue problem, we investigate several properties of holographic s-wave superconductors in Gauss-Bonnet gravity with Born-Infeld electrodynamics in the probe limit. Our analytic scheme has been found to be in good agreement with the numerical results. From our analysis it is quite evident that the scalar hair formation at low temperatures is indeed affected by both the Gauss-Bonnet as well as the Born-Infeld coupling parameters. We also compute the critical exponent associated with the condensation near the critical temperature. The value of the critical exponent thus obtained indeed suggests a universal mean field behavior.Comment: 9 pages, Latex, minor modifications, To appear in JHE

    Case study on user knowledge and design knowledge in product form design

    Get PDF
    2003-2004 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Refractive index in holographic superconductors

    Full text link
    With the probe limit, we investigate the behavior of the electric permittivity and effective magnetic permeability and related optical properties in the s-wave holographic superconductors. In particular, our result shows that unlike the strong coupled systems which admit a gravity dual of charged black holes in the bulk, the electric permittivity and effective magnetic permeability are unable to conspire to bring about the negative Depine-Lakhtakia index at low frequencies, which implies that the negative phase velocity does not appear in the holographic superconductors under such a situation.Comment: JHEP style, 1+15 pages, 11 figures, version to appear in JHE

    The Rich Structure of Gauss-Bonnet Holographic Superconductors

    Full text link
    We study fully backreacting, Gauss-Bonnet (GB) holographic superconductors in 5 bulk spacetime dimensions. We explore the system's dependence on the scalar mass for both positive and negative GB coupling, α\alpha. We find that when the mass approaches the Breitenlohner-Freedman (BF) bound and αL2/4\alpha\rightarrow L^2/4 the effect of backreaction is to increase the critical temperature, TcT_c, of the system: the opposite of its effect in the rest of parameter space. We also find that reducing α\alpha below zero increases TcT_c and that the effect of backreaction is diminished. We study the zero temperature limit, proving that this system does not permit regular solutions for a non-trivial, tachyonic scalar field and constrain possible solutions for fields with positive masses. We investigate singular, zero temperature solutions in the Einstein limit but find them to be incompatible with the concept of GB gravity being a perturbative expansion of Einstein gravity. We study the conductivity of the system, finding that the inclusion of backreaction hinders the development of poles in the conductivity that are associated with quasi-normal modes approaching the real axis from elsewhere in the complex plane.Comment: 26 pages, 11 figures, V3, Added discussion of non-tachyonic scalars, alterations to figures and tex

    Holographic Superconductors with Power-Maxwell field

    Full text link
    With the Sturm-Liouville analytical and numerical methods, we investigate the behaviors of the holographic superconductors by introducing a complex charged scalar field coupled with a Power-Maxwell field in the background of dd-dimensional Schwarzschild AdS black hole. We note that the Power-Maxwell field takes the special asymptotical solution near boundary which is different from all known cases. We find that the larger power parameter qq for the Power-Maxwell field makes it harder for the scalar hair to be condensated. We also find that, for different qq, the critical exponent of the system is still 1/2, which seems to be an universal property for various nonlinear electrodynamics if the scalar field takes the form of this paper.Comment: 14 pages, 1 figure, and 2 table

    Analytic study of properties of holographic p-wave superconductors

    Full text link
    In this paper, we analytically investigate the properties of p-wave holographic superconductors in AdS4AdS_{4}-Schwarzschild background by two approaches, one based on the Sturm-Liouville eigenvalue problem and the other based on the matching of the solutions to the field equations near the horizon and near the asymptotic AdSAdS region. The relation between the critical temperature and the charge density has been obtained and the dependence of the expectation value of the condensation operator on the temperature has been found. Our results are in very good agreement with the existing numerical results. The critical exponent of the condensation also comes out to be 1/2 which is the universal value in the mean field theory.Comment: Latex, To appear in JHE

    Dipole Coupling Effect of Holographic Fermion in the Background of Charged Gauss-Bonnet AdS Black Hole

    Full text link
    We investigate the holographic fermions in the charged Gauss-Bonnet AdSdAdS_{d} black hole background with the dipole coupling between fermion and gauge field in the bulk. We show that in addition to the strength of the dipole coupling, the spacetime dimension and the higher curvature correction in the gravity background also influence the onset of the Fermi gap and the gap distance. We find that the higher curvature effect modifies the fermion spectral density and influences the value of the Fermi momentum for the appearance of the Fermi surface. There are richer physics in the boundary fermion system due to the modification in the bulk gravity.Comment: 16 pages, accepted for publication in JHE

    Evidence for genetic association of TBX21 and IFNG with systemic lupus erythematosus in a Chinese Han population

    Get PDF
    TBX21 recode T-bet which is an important transcription factor that drives the Th1 immune response primarily by promoting expression of the interferon-gamma (IFNG) gene. Recent studies have shown that genetic variants in TBX21 and IFNG are connected with risk of systemic lupus erythematosus (SLE). The aim of the present study was to replicate these genetic associations with SLE in Anhui Chinese population. Genotyping of 3 variants (rs4794067 in TBX21, rs2069705 and rs2069718 in IFNG) was performed. A total of 3732 subjects were included in the final analysis. The study only identified the association of rs2069705 with SLE susceptibility (T vs. C: odds ratio [OR] = 1.12, 95% confidence interval [CI] = 1.00-1.26, P = 0.046). Combined analysis with Hong Kong GWAS showed that the OR for rs2069705 was 1.10 (95% CI: 1.01-1.21, P = 0.027). Further pooled analysis with Korean populations involving 10498 subjects showed a more significant association between rs2069705 and SLE (T vs. C: OR = 1.11, 95%CI = 1.04-1.19, P = 0.002; TT + TC vs. CC: OR = 1.11, 95%CI = 1.02-1.21, P = 0.012; TT vs. TC + CC: OR = 1.28, 95%CI = 1.07-1.54, P = 0.008; TT vs. CC: OR = 1.33, 95%CI = 1.10-1.60, P = 0.003). In addition, we also identified a significant genetic interaction between rs2069705 and rs4794067 in Anhui Chinese population. Our study suggests that IFNG and IFNG-TBX21 interaction are involved in SLE susceptibility.published_or_final_versio

    A holographic model for the fractional quantum Hall effect

    Full text link
    Experimental data for fractional quantum Hall systems can to a large extent be explained by assuming the existence of a modular symmetry group commuting with the renormalization group flow and hence mapping different phases of two-dimensional electron gases into each other. Based on this insight, we construct a phenomenological holographic model which captures many features of the fractional quantum Hall effect. Using an SL(2,Z)-invariant Einstein-Maxwell-axio-dilaton theory capturing the important modular transformation properties of quantum Hall physics, we find dyonic diatonic black hole solutions which are gapped and have a Hall conductivity equal to the filling fraction, as expected for quantum Hall states. We also provide several technical results on the general behavior of the gauge field fluctuations around these dyonic dilatonic black hole solutions: We specify a sufficient criterion for IR normalizability of the fluctuations, demonstrate the preservation of the gap under the SL(2,Z) action, and prove that the singularity of the fluctuation problem in the presence of a magnetic field is an accessory singularity. We finish with a preliminary investigation of the possible IR scaling solutions of our model and some speculations on how they could be important for the observed universality of quantum Hall transitions.Comment: 86 pages, 16 figures; v.2 references added, typos fixed, improved discussion of ref. [39]; v.3 more references added and typos fixed, several statements clarified, v.4 version accepted for publication in JHE

    Analytical study on holographic superconductors in external magnetic field

    Full text link
    We investigate the holographic superconductors immersed in an external magnetic field by using the analytical approach. We obtain the spatially dependent condensate solutions in the presence of the magnetism and find analytically that the upper critical magnetic field satisfies the relation given in the Ginzburg-Landau theory. We observe analytically the reminiscent of the Meissner effect where the magnetic field expels the condensate. Extending to the D-dimensional Gauss-Bonnet AdS black holes, we examine the influence given by the Gauss-Bonnet coupling on the condensation. Different from the positive coupling, we find that the negative Gauss-Bonnet coupling enhances the condensation when the external magnetism is not strong enough.Comment: revised version, to appear in JHE
    corecore