30 research outputs found

    Characterization of High-Fat, Diet-Induced, Non-alcoholic Steatohepatitis with Fibrosis in Rats

    Get PDF
    An ideal animal model is necessary for a clear understanding of the etiology, pathogenesis, and mechanisms of human non-alcoholic steatohepatitis (NASH) and for facilitating the design of effective therapy for this condition. We aimed to establish a rat model of NASH with fibrosis by using a high-fat diet (HFD). Male Sprague–Dawley (SD) rats were fed a HFD consisting of 88 g normal diet, 10 g lard oil, and 2 g cholesterol. Control rats were fed normal diet. Rats were killed at 4, 8, 12, 16, 24, 36, and 48 weeks after HFD exposure. Body weight, liver weight, and epididymal fat weight were measured. Serum levels of fasting glucose, triglyceride, cholesterol, alanine aminotransferase (ALT), free fatty acids (FFA), insulin, and tumor necrosis factor-alpha (TNF-α) were determined. Hepatic histology was examined by H&E stain. Hepatic fibrosis was assessed by VG stain and immunohistochemical staining for transforming growth factor beta 1 (TGF-β1), and alpha-smooth-muscle actin (α-SMA). The liver weight and liver index increased from week 4, when hepatic steatosis was also observed. By week 8, the body weight and epididymal fat weight started increasing, which was associated with increased serum levels of FFA, cholesterol, and TNF-α, as well as development of simple fatty liver. The serum ALT level increased from week 12. Steatohepatitis occurred from weeks 12 through 48. Apparent hepatic perisinosodial fibrosis did not occur until week 24, and progressed from week 36 to 48 with insulin resistance. Therefore, this novel model may be potentially useful in NASH study

    Positive Feedback between Transcriptional and Kinase Suppression in Nematodes with Extraordinary Longevity and Stress Resistance

    Get PDF
    Insulin/IGF-1 signaling (IIS) regulates development and metabolism, and modulates aging, of Caenorhabditis elegans. In nematodes, as in mammals, IIS is understood to operate through a kinase-phosphorylation cascade that inactivates the DAF-16/FOXO transcription factor. Situated at the center of this pathway, phosphatidylinositol 3-kinase (PI3K) phosphorylates PIP2 to form PIP3, a phospholipid required for membrane tethering and activation of many signaling molecules. Nonsense mutants of age-1, the nematode gene encoding the class-I catalytic subunit of PI3K, produce only a truncated protein lacking the kinase domain, and yet confer 10-fold greater longevity on second-generation (F2) homozygotes, and comparable gains in stress resistance. Their F1 parents, like weaker age-1 mutants, are far less robust—implying that maternally contributed trace amounts of PI3K activity or of PIP3 block the extreme age-1 phenotypes. We find that F2-mutant adults have <10% of wild-type kinase activity in vitro and <60% of normal phosphoprotein levels in vivo. Inactivation of PI3K not only disrupts PIP3-dependent kinase signaling, but surprisingly also attenuates transcripts of numerous IIS components, even upstream of PI3K, and those of signaling molecules that cross-talk with IIS. The age-1(mg44) nonsense mutation results, in F2 adults, in changes to kinase profiles and to expression levels of multiple transcripts that distinguish this mutant from F1 age-1 homozygotes, a weaker age-1 mutant, or wild-type adults. Most but not all of those changes are reversed by a second mutation to daf-16, implicating both DAF-16/ FOXO–dependent and –independent mechanisms. RNAi, silencing genes that are downregulated in long-lived worms, improves oxidative-stress resistance of wild-type adults. It is therefore plausible that attenuation of those genes in age-1(mg44)-F2 adults contributes to their exceptional survival. IIS in nematodes (and presumably in other species) thus involves transcriptional as well as kinase regulation in a positive-feedback circuit, favoring either survival or reproduction. Hyperlongevity of strong age-1(mg44) mutants may result from their inability to reset this molecular switch to the reproductive mode

    Effects of Lactobacillus paracasei CNCM I-4034, Bifidobacterium breve CNCM I-4035 and Lactobacillus rhamnosus CNCM I-4036 on Hepatic Steatosis in Zucker Rats

    Get PDF
    We have previously described the safety and immunomodulatory effects of Lactobacillus paracasei CNCM I-4034, Bifidobacterium breve CNCM I-4035 and Lactobacillus rhamnosus CNCM I-4036 in healthy volunteers. The scope of this work was to evaluate the effects of these probiotic strains on the hepatic steatosis of obese rats. We used the Zucker rat as a genetic model of obesity. Zucker-Leprfa/fa rats received one of three probiotic strains, a mixture of L. paracasei CNCM I-4034 and B. breve CNCM I-4035, or a placebo for 30 days. An additional group of Zucker-lean+/fa rats received a placebo for 30 days. No alterations in intestinal histology, in the epithelial, lamina propria, muscular layers of the ileal or colonic mucosa, or the submucosae, were observed in any of the experimental groups. Triacylglycerol content decreased in the liver of Zucker-Leprfa/fa rats that were fed L. rhamnosus, B. breve, or the mixture of B. breve and L. paracasei. Likewise, the area corresponding to neutral lipids was significantly smaller in the liver of all four groups of Zucker-Leprfa/fa rats that received probiotics than in rats fed the placebo. Zucker-Leprfa/fa rats exhibited significantly greater serum LPS levels than Zucker-lean+/fa rats upon administration of placebo for 30 days. In contrast, all four groups of obese Zucker-Leprfa/fa rats that received LAB strains exhibited serum LPS concentrations similar to those of Zucker-lean+/fa rats. Serum TNF-α levels decreased in the Zucker-Leprfa/fa rats that received B. breve, L. rhamnosus, or the mixture, whereas L. paracasei feeding decreased IL-6 levels in the serum of Zucker-Leprfa/fa rats. In conclusion, the probiotic strains reduced hepatic steatosis in part by lowering serum LPS, and had an anti-inflammatory effect in obese Zucker rats.Part of the research currently in progress in the authors' laboratory is funded by the company Hero Spain, S. A. through the grant #3545 managed by the Fundacion General Empresa-Universidad de Granada
    corecore