42 research outputs found

    Proteomic Analysis of the Human Anterior Pituitary Gland.

    No full text
    Final publication is available from Mary Ann Liebert, Inc., publishers https://doi.org/10.1089/omi.2018.0160The pituitary function is regulated by a complex system involving the hypothalamus and biological networks within the pituitary. Although the hormones secreted from the pituitary have been well studied, comprehensive analyses of the pituitary proteome are limited. Pituitary proteomics is a field of postgenomic research that is crucial to understand human health and pituitary diseases. In this context, we report here a systematic proteomic profiling of human anterior pituitary gland (adenohypophysis) using high-resolution Fourier transform mass spectrometry. A total of 2164 proteins were identified in this study, of which 105 proteins were identified for the first time compared with high-throughput proteomic-based studies from human pituitary glands. In addition, we identified 480 proteins with secretory potential and 187 N-terminally acetylated proteins. These are the first region-specific data that could serve as a vital resource for further investigations on the physiological role of the human anterior pituitary glands and the proteins secreted by them. We anticipate that the identification of previously unknown proteins in the present study will accelerate biomedical research to decipher their role in functioning of the human anterior pituitary gland and associated human diseases.The study was supported by a research grant “DBT Programme Support on Neuroproteomics of Neurological Disorders” to IOB and NIMHANS by DBT, Government of India (BT/01/COE/08/05).This publication was partly supported by a subaward from The Johns Hopkins University, with funds provided from the National Institute of Neurological Disorders and Stroke (NINDS) (Grant Number: 1RO1NS055628-01A2).J.A. is a recipient of Senior Research Fellowships from the Council for Scientific and Industrial Research (CSIR), Government of India. A.T. is a recipient of Senior Research Fellowship from Yenepoya (deemed to be University). V.M. is a recipient of Junior Research Fellowship from Yenepoya (deemed to be University)

    Preparation of Polymeric Micelles of Poly(Ethylene Oxide-b-Lactic Acid) and their Encapsulation With Lavender Oil

    No full text
    Nanoparticles comprised of the poly(ethylene oxide)-b-poly (lactic acid) diblock copolymer (PEO-b-PLA) with and without the incorporation of lavender oil were prepared by nanoprecipitation. Diblock copolymers based on a fixed PEO block (5KDa) and two different PLA segments (4.5 or 10KDa) were used. The morphology, encapsulation efficiency, essential oil-polymer interaction and the release kinetics of the active agent in the nanoparticles, were evaluated. The hydrodynamic radius of the nanoparticles determined by light scattering was affected by the size of the poly(lactic acid) (PLA) block. The lavender essential oil encapsulation efficiency (at a concentration of 0.4 µL mL-1) determined by UV-VIS spectroscopy was in the range of 70-75%. The in vitro release suggests that the polymeric barrier is able to control the oil release
    corecore