11 research outputs found

    Extreme genetic fragility of the HIV-1 capsid

    Get PDF
    Genetic robustness, or fragility, is defined as the ability, or lack thereof, of a biological entity to maintain function in the face of mutations. Viruses that replicate via RNA intermediates exhibit high mutation rates, and robustness should be particularly advantageous to them. The capsid (CA) domain of the HIV-1 Gag protein is under strong pressure to conserve functional roles in viral assembly, maturation, uncoating, and nuclear import. However, CA is also under strong immunological pressure to diversify. Therefore, it would be particularly advantageous for CA to evolve genetic robustness. To measure the genetic robustness of HIV-1 CA, we generated a library of single amino acid substitution mutants, encompassing almost half the residues in CA. Strikingly, we found HIV-1 CA to be the most genetically fragile protein that has been analyzed using such an approach, with 70% of mutations yielding replication-defective viruses. Although CA participates in several steps in HIV-1 replication, analysis of conditionally (temperature sensitive) and constitutively non-viable mutants revealed that the biological basis for its genetic fragility was primarily the need to coordinate the accurate and efficient assembly of mature virions. All mutations that exist in naturally occurring HIV-1 subtype B populations at a frequency >3%, and were also present in the mutant library, had fitness levels that were >40% of WT. However, a substantial fraction of mutations with high fitness did not occur in natural populations, suggesting another form of selection pressure limiting variation in vivo. Additionally, known protective CTL epitopes occurred preferentially in domains of the HIV-1 CA that were even more genetically fragile than HIV-1 CA as a whole. The extreme genetic fragility of HIV-1 CA may be one reason why cell-mediated immune responses to Gag correlate with better prognosis in HIV-1 infection, and suggests that CA is a good target for therapy and vaccination strategies

    FREQUENCY AND SEVERITY OF CYCLIC FLOW ALTERNATIONS AND PLATELET-AGGREGATION PREDICT THE SEVERITY OF NEOINTIMAL PROLIFERATION FOLLOWING EXPERIMENTAL CORONARY STENOSIS AND ENDOTHELIAL INJURY

    No full text
    The role of recurrent platelet aggregation in the development of neointimal proliferation of coronary arteries was explored in this study, and the hypothesis was evaluated that recurrent platelet aggregation and the consequent frequency and severity of cyclic coronary blood flow variations are important pathophysiologic factors in the subsequent development of neointimal proliferation. In 24 chronically instrumented dogs, variable degrees of coronary artery neointimal proliferation were observed 3 weeks after mechanical injury of the arterial endothelium and the placement of an external coronary artery constrictor. The severity of neointimal proliferation at 21 days was closely related to the frequency and severity of cyclic coronary blood flow variations during the initial 7 days after instrumentation of the animals, itself a manifestation of recurrent platelet aggregation and dislodgement. Pharmacological therapy with a dual thromboxane A2 synthetase inhibitor and receptor antagonist and with a serotonin S2 receptor antagonist frequently was successful in abolishing cyclic blood flow variations and in retarding neointimal proliferation

    Cardiovascular Activity

    No full text
    corecore