1,024 research outputs found

    Non-Equilibrium Field Dynamics of an Honest Holographic Superconductor

    Full text link
    Most holographic models of superconducting systems neglect the effects of dynamical boundary gauge fields during the process of spontaneous symmetry-breaking. Usually a global symmetry gets broken. This yields a superfluid, which then is gauged "weakly" afterwards. In this work we build (and probe the dynamics of) a holographic model in which a local boundary symmetry is spontaneously broken instead. We compute two-point functions of dynamical non-Abelian gauge fields in the normal and in the broken phase, and find non-trivial gapless modes. Our AdS3 gravity dual realizes a p-wave superconductor in (1+1) dimensions. The ground state of this model also breaks (1+1)-dimensional parity spontaneously, while the Hamiltonian is parity-invariant. We discuss possible implications of our results for a wider class of holographic liquids.Comment: 32 pages, 12 figures; v3: string theory derivation of setup added (section 3.1), improved presentation, version accepted by JHEP; v2: paragraph added to discussion, figure added, references added, typos correcte

    Acute rejection is associated with antibodies to non-Gal antigens in baboons using Gal-knockout pig kidneys

    Get PDF
    We transplanted kidneys from α1,3-galactosyltransferase knockout (GalT-KO) pigs into six baboons using two different immunosuppressive regimens, but most of the baboons died from severe acute humoral xenograft rejection. Circulating induced antibodies to non-Gal antigens were markedly elevated at rejection, which mediated strong complement-dependent cytotoxicity against GalT-KO porcine target cells. These data suggest that antibodies to non-Gal antigens will present an additional barrier to transplantation of organs from GalT-KO pigs to humans. © 2005 Nature Publishing Group

    Ultrastructural and functional fate of recycled vesicles in hippocampal synapses

    Get PDF
    Efficient recycling of synaptic vesicles is thought to be critical for sustained information transfer at central terminals. However, the specific contribution that retrieved vesicles make to future transmission events remains unclear. Here we exploit fluorescence and time-stamped electron microscopy to track the functional and positional fate of vesicles endocytosed after readily releasable pool (RRP) stimulation in rat hippocampal synapses. We show that most vesicles are recovered near the active zone but subsequently take up random positions in the cluster, without preferential bias for future use. These vesicles non-selectively queue, advancing towards the release site with further stimulation in an actin-dependent manner. Nonetheless, the small subset of vesicles retrieved recently in the stimulus train persist nearer the active zone and exhibit more privileged use in the next RRP. Our findings reveal heterogeneity in vesicle fate based on nanoscale position and timing rules, providing new insights into the origins of future pool constitution

    Gauge-theoretic invariants for topological insulators: A bridge between Berry, Wess-Zumino, and Fu-Kane-Mele

    Full text link
    We establish a connection between two recently-proposed approaches to the understanding of the geometric origin of the Fu-Kane-Mele invariant FKMZ2\mathrm{FKM} \in \mathbb{Z}_2, arising in the context of 2-dimensional time-reversal symmetric topological insulators. On the one hand, the Z2\mathbb{Z}_2 invariant can be formulated in terms of the Berry connection and the Berry curvature of the Bloch bundle of occupied states over the Brillouin torus. On the other, using techniques from the theory of bundle gerbes it is possible to provide an expression for FKM\mathrm{FKM} containing the square root of the Wess-Zumino amplitude for a certain U(N)U(N)-valued field over the Brillouin torus. We link the two formulas by showing directly the equality between the above mentioned Wess-Zumino amplitude and the Berry phase, as well as between their square roots. An essential tool of independent interest is an equivariant version of the adjoint Polyakov-Wiegmann formula for fields T2U(N)\mathbb{T}^2 \to U(N), of which we provide a proof employing only basic homotopy theory and circumventing the language of bundle gerbes.Comment: 23 pages, 1 figure. To appear in Letters in Mathematical Physic

    A simple strategy guides the complex metabolic regulation in Escherichia coli

    Get PDF
    A way to decipher the complexity of the cellular metabolism is to study the effect of different external perturbations. Through an analysis over a sufficiently large set of gene knockouts and growing conditions, one aims to find a unifying principle that governs the metabolic regulation. For instance, it is known that the cessation of the microorganism proliferation after a gene deletion is only transient. However, we do not know the guiding principle that determines the partial or complete recovery of the growth rate, the corresponding redistribution of the metabolic fluxes and the possible different phenotypes. In spite of this large variety in the observed metabolic adjustments, we show that responses of E. coli to several different perturbations can always be derived from a sequence of greedy and myopic resilencings. This simple mechanism provides a detailed explanation for the experimental dynamics both at cellular (proliferation rate) and molecular level ((13)C-determined fluxes), also in case of appearance of multiple phenotypes. As additional support, we identified an example of a simple network motif that is capable of implementing this myopic greediness in the regulation of the metabolism

    Overexpression of Cathepsin Z Contributes to Tumor Metastasis by Inducing Epithelial-Mesenchymal Transition in Hepatocellular Carcinoma

    Get PDF
    The aim of this study was to characterize the oncogenic function and mechanism of Cathepsin Z (CTSZ) at 20q13.3, a frequently amplified region in hepatocellular carcinoma (HCC). Real-time PCR were used to compare CTSZ expression between paired HCC tumor and non-tumor specimens. CTSZ gene was stably transfected into HCC line QGY-7703 cells and its role in tumorigenicity and cell motility was characterized by soft agar, wound-healing, transwell invasion and cell adhesion assay, and tumor xenograft mouse model. Western blot analysis was used to study expression of proteins associated with epithelial-mesenchymal transition (EMT)

    Ribosomal oxygenases are structurally conserved from prokaryotes to humans

    Get PDF
    2-Oxoglutarate (2OG)-dependent oxygenases have important roles in the regulation of gene expression via demethylation of N-methylated chromatin components1,2 and in the hydroxylation of transcription factors3 and splicing factor proteins4. Recently, 2OG-dependent oxygenases that catalyse hydroxylation of transfer RNA5,6,7 and ribosomal proteins8 have been shown to be important in translation relating to cellular growth, TH17-cell differentiation and translational accuracy9,10,11,12. The finding that ribosomal oxygenases (ROXs) occur in organisms ranging from prokaryotes to humans8 raises questions as to their structural and evolutionary relationships. In Escherichia coli, YcfD catalyses arginine hydroxylation in the ribosomal protein L16; in humans, MYC-induced nuclear antigen (MINA53; also known as MINA) and nucleolar protein 66 (NO66) catalyse histidine hydroxylation in the ribosomal proteins RPL27A and RPL8, respectively. The functional assignments of ROXs open therapeutic possibilities via either ROX inhibition or targeting of differentially modified ribosomes. Despite differences in the residue and protein selectivities of prokaryotic and eukaryotic ROXs, comparison of the crystal structures of E. coli YcfD and Rhodothermus marinus YcfD with those of human MINA53 and NO66 reveals highly conserved folds and novel dimerization modes defining a new structural subfamily of 2OG-dependent oxygenases. ROX structures with and without their substrates support their functional assignments as hydroxylases but not demethylases, and reveal how the subfamily has evolved to catalyse the hydroxylation of different residue side chains of ribosomal proteins. Comparison of ROX crystal structures with those of other JmjC-domain-containing hydroxylases, including the hypoxia-inducible factor asparaginyl hydroxylase FIH and histone Nε-methyl lysine demethylases, identifies branch points in 2OG-dependent oxygenase evolution and distinguishes between JmjC-containing hydroxylases and demethylases catalysing modifications of translational and transcriptional machinery. The structures reveal that new protein hydroxylation activities can evolve by changing the coordination position from which the iron-bound substrate-oxidizing species reacts. This coordination flexibility has probably contributed to the evolution of the wide range of reactions catalysed by oxygenases

    A Transcriptional Enhancer from the Coding Region of ADAMTS5

    Get PDF
    The revelation that the human genome encodes only approximately 25,000 genes and thus cannot account for phenotypic complexity has been one of the biggest surprises in the post-genomic era. However, accumulating evidence suggests that transcriptional regulation may be in large part responsible for this observed mammalian complexity. Consequently, there has been a strong drive to locate cis-regulatory regions in mammalian genomes in order to understand the unifying principles governing these regions, including their genomic distribution. Although a number of systematic approaches have been developed, these all discount coding sequence.Using the computational tool PRI (Pattern-defined Regulatory Islands), which does not mask coding sequence, we identified a regulatory region associated with the gene ADAMTS5 that encompasses the entirety of the essential coding exon 2. We demonstrate through a combination of chromatin immunoprecipitation and reporter gene studies that this region can not only bind the myogenic transcription factors MYOD and myogenin and the E-protein HEB but can also function as a very strong myogenic transcriptional enhancer.Thus, we report the identification and detailed characterization of an exonic enhancer. Ultimately, this leads to the interesting question of why evolution would be so parsimonious in the functional assignment of sequence

    Reliable Detection of Paternal SNPs within Deletion Breakpoints for Non-Invasive Prenatal Exclusion of Homozygous α0-Thalassemia in Maternal Plasma

    Get PDF
    Reliable detection of large deletions from cell-free fetal DNA (cffDNA) in maternal plasma is challenging, especially when both parents have the same deletion owing to a lack of specific markers for fetal genotyping. In order to evaluate the efficacy of a non-invasive prenatal diagnosis (NIPD) test to exclude α-thalassemia major that uses SNPs linked to the normal paternal α-globin allele, we established a novel protocol to reliably detect paternal SNPs within the (−−SEA) breakpoints and performed evaluation of the diagnostic potential of the protocol in a total of 67 pregnancies, in whom plasma samples were collected prior to invasive obstetrics procedures in southern China. A group of nine SNPs identified within the deletion breakpoints were scanned to select the informative SNPs in each of the 67 couples DNA by multiplex PCR based mini-sequencing technique. The paternally inherited SNP allele from cffDNA was detected by allele specific real-time PCR. A protocol for reliable detection of paternal SNPs within the (−−SEA) breakpoints was established and evaluation of the diagnostic potential of the protocol was performed in a total of 67 pregnancies. In 97% of the couples one or more different SNPs within the deletion breakpoint occurred between paternal and maternal alleles. Homozygosity for the (−−SEA) deletion was accurately excluded in 33 out of 67 (49.3%, 95% CI, 25.4–78.6%) pregnancies through the implementation of the protocol. Protocol was completely concordant with the traditional reference methods, except for two cases that exhibited uncertain results due to sample hemolysis. This method could be used as a routine NIPD test to exclude gross fetal deletions in α-thalassemia major, and could further be employed to test for other diseases due to gene deletion
    corecore