34 research outputs found

    6-OHDA-induced dopaminergic neurodegeneration in <i>Caenorhabditis elegans</i> is promoted by the engulfment pathway and inhibited by the transthyretin-related protein TTR-33

    Get PDF
    <div><p>Oxidative stress is linked to many pathological conditions including the loss of dopaminergic neurons in Parkinson’s disease. The vast majority of disease cases appear to be caused by a combination of genetic mutations and environmental factors. We screened for genes protecting <i>Caenorhabditis elegans</i> dopaminergic neurons from oxidative stress induced by the neurotoxin 6-hydroxydopamine (6-OHDA) and identified the <u>t</u>rans<u>t</u>hyretin-<u>r</u>elated gene <i>ttr-33</i>. The only described <i>C</i>. <i>elegans</i> transthyretin-related protein to date, TTR-52, has been shown to mediate corpse engulfment as well as axon repair. We demonstrate that TTR-52 and TTR-33 have distinct roles. TTR-33 is likely produced in the posterior arcade cells in the head of <i>C</i>. <i>elegans</i> larvae and is predicted to be a secreted protein. TTR-33 protects <i>C</i>. <i>elegans</i> from oxidative stress induced by paraquat or H<sub>2</sub>O<sub>2</sub> at an organismal level. The increased oxidative stress sensitivity of <i>ttr-33</i> mutants is alleviated by mutations affecting the KGB-1 MAPK kinase pathway, whereas it is enhanced by mutation of the JNK-1 MAPK kinase. Finally, we provide genetic evidence that the <i>C</i>. <i>elegans</i> cell corpse engulfment pathway is required for the degeneration of dopaminergic neurons after exposure to 6-OHDA. In summary, we describe a new neuroprotective mechanism and demonstrate that TTR-33 normally functions to protect dopaminergic neurons from oxidative stress-induced degeneration, potentially by acting as a secreted sensor or scavenger of oxidative stress.</p></div

    Structure and TBP binding of the Mediator head subcomplex Med8–Med18–Med20

    No full text
    The Mediator head module stimulates basal RNA polymerase II (Pol II) transcription and enables transcriptional regulation. Here we show that the head subunits Med8, Med18 and Med20 form a subcomplex (Med8/18/20) with two submodules. The highly conserved N-terminal domain of Med8 forms one submodule that binds the TATA box–binding protein (TBP) in vitro and is essential in vivo. The second submodule consists of the C-terminal region of Med8 (Med8C), Med18 and Med20. X-ray analysis of this submodule reveals that Med18 and Med20 form related beta-barrel folds. A conserved putative protein-interaction face on the Med8C/18/20 submodule includes sites altered by srb mutations, which counteract defects resulting from Pol II truncation. Our results and published data support a positive role of the Med8/18/20 subcomplex in initiation-complex formation and suggest that the Mediator head contains a multipartite TBP-binding site that can be modulated by transcriptional activators

    Interactive Effects of Warming and Increased Precipitation on Community Structure and Composition in an Annual Forb Dominated Desert Steppe

    Get PDF
    To better understand how warming, increased precipitation and their interactions influence community structure and composition, a field experiment simulating hydrothermal interactions was conducted at an annual forb dominated desert steppe in northern China over 2 years. Increased precipitation increased species richness while warming significantly decreased species richness, and their effects were additive rather than interactive. Although interannual variations in weather conditions may have a major affect on plant community composition on short term experiments, warming and precipitation treatments affected individual species and functional group composition. Warming caused C(4) grasses such as Cleistogenes squarrosa to increase while increased precipitation caused the proportions of non-perennial C(3) plants like Artemisia capillaris to decrease and perennial C(4) plants to increase
    corecore