3,401 research outputs found

    Challenges of Profile Likelihood Evaluation in Multi-Dimensional SUSY Scans

    Get PDF
    Statistical inference of the fundamental parameters of supersymmetric theories is a challenging and active endeavor. Several sophisticated algorithms have been employed to this end. While Markov-Chain Monte Carlo (MCMC) and nested sampling techniques are geared towards Bayesian inference, they have also been used to estimate frequentist confidence intervals based on the profile likelihood ratio. We investigate the performance and appropriate configuration of MultiNest, a nested sampling based algorithm, when used for profile likelihood-based analyses both on toy models and on the parameter space of the Constrained MSSM. We find that while the standard configuration is appropriate for an accurate reconstruction of the Bayesian posterior, the profile likelihood is poorly approximated. We identify a more appropriate MultiNest configuration for profile likelihood analyses, which gives an excellent exploration of the profile likelihood (albeit at a larger computational cost), including the identification of the global maximum likelihood value. We conclude that with the appropriate configuration MultiNest is a suitable tool for profile likelihood studies, indicating previous claims to the contrary are not well founded.Comment: 21 pages, 9 figures, 1 table; minor changes following referee report. Matches version accepted by JHE

    MFV Reductions of MSSM Parameter Space

    Full text link
    The 100+ free parameters of the minimal supersymmetric standard model (MSSM) make it computationally difficult to compare systematically with data, motivating the study of specific parameter reductions such as the cMSSM and pMSSM. Here we instead study the reductions of parameter space implied by using minimal flavour violation (MFV) to organise the R-parity conserving MSSM, with a view towards systematically building in constraints on flavour-violating physics. Within this framework the space of parameters is reduced by expanding soft supersymmetry-breaking terms in powers of the Cabibbo angle, leading to a 24-, 30- or 42-parameter framework (which we call MSSM-24, MSSM-30, and MSSM-42 respectively), depending on the order kept in the expansion. We provide a Bayesian global fit to data of the MSSM-30 parameter set to show that this is manageable with current tools. We compare the MFV reductions to the 19-parameter pMSSM choice and show that the pMSSM is not contained as a subset. The MSSM-30 analysis favours a relatively lighter TeV-scale pseudoscalar Higgs boson and tanβ10\tan \beta \sim 10 with multi-TeV sparticles.Comment: 2nd version, minor comments and references added, accepted for publication in JHE

    Setting limits on Effective Field Theories: the case of Dark Matter

    Full text link
    The usage of Effective Field Theories (EFT) for LHC new physics searches is receiving increasing attention. It is thus important to clarify all the aspects related with the applicability of the EFT formalism in the LHC environment, where the large available energy can produce reactions that overcome the maximal range of validity, i.e. the cutoff, of the theory. We show that this does forbid to set rigorous limits on the EFT parameter space through a modified version of the ordinary binned likelihood hypothesis test, which we design and validate. Our limit-setting strategy can be carried on in its full-fledged form by the LHC experimental collaborations, or performed externally to the collaborations, through the Simplified Likelihood approach, by relying on certain approximations. We apply it to the recent CMS mono-jet analysis and derive limits on a Dark Matter (DM) EFT model. DM is selected as a case study because the limited reach on the DM production EFT Wilson coefficient and the structure of the theory suggests that the cutoff might be dangerously low, well within the LHC reach. However our strategy can also be applied to EFT's parametrising the indirect effects of heavy new physics in the Electroweak and Higgs sectors

    Neutralino versus axion/axino cold dark matter in the 19 parameter SUGRA model

    Full text link
    We calculate the relic abundance of thermally produced neutralino cold dark matter in the general 19 parameter supergravity (SUGRA-19) model. A scan over GUT scale parameters reveals that models with a bino-like neutralino typically give rise to a dark matter density \Omega_{\tz_1}h^2\sim 1-1000, i.e. between 1 and 4 orders of magnitude higher than the measured value. Models with higgsino or wino cold dark matter can yield the correct relic density, but mainly for neutralino masses around 700-1300 GeV. Models with mixed bino-wino or bino-higgsino CDM, or models with dominant co-annihilation or A-resonance annihilation can yield the correct abundance, but such cases are extremely hard to generate using a general scan over GUT scale parameters; this is indicative of high fine-tuning of the relic abundance in these cases. Requiring that m_{\tz_1}\alt 500 GeV (as a rough naturalness requirement) gives rise to a minimal probably dip in parameter space at the measured CDM abundance. For comparison, we also scan over mSUGRA space with four free parameters. Finally, we investigate the Peccei-Quinn augmented MSSM with mixed axion/axino cold dark matter. In this case, the relic abundance agrees more naturally with the measured value. In light of our cumulative results, we conclude that future axion searches should probe much more broadly in axion mass, and deeper into the axion coupling.Comment: 23 pages including 17 .eps figure

    Holographic metastability

    Full text link
    We show how supersymmetric QCD in a slice of AdS can naturally acquire metastable vacua. The formulation closely follows that of Intriligator, Seiberg and Shih (ISS), with an "electric" sector on the UV brane and a "magnetic" sector on the IR brane. However the 't Hooft anomaly matching that constrains the Seiberg duality central to ISS is replaced by anomaly inflow and cancellation, and the source of strong coupling is the CFT to which the theory couples rather than the gauge groups. The theory contains an anomaly free R-symmetry that, when broken by UV effects, leads to an O'Raifeartaigh model on the IR brane. In contrast to ISS, the R-symmetry breaking in the UV can be maximal, and yet the R-symmetry breaking in the IR theory remains under strict control: there is no need for retrofitting of small parameters.Comment: 20 pages, 2 figure

    The Bulk Channel in Thermal Gauge Theories

    Get PDF
    We investigate the thermal correlator of the trace of the energy-momentum tensor in the SU(3) Yang-Mills theory. Our goal is to constrain the spectral function in that channel, whose low-frequency part determines the bulk viscosity. We focus on the thermal modification of the spectral function, ρ(ω,T)ρ(ω,0)\rho(\omega,T)-\rho(\omega,0). Using the operator-product expansion we give the high-frequency behavior of this difference in terms of thermodynamic potentials. We take into account the presence of an exact delta function located at the origin, which had been missed in previous analyses. We then combine the bulk sum rule and a Monte-Carlo evaluation of the Euclidean correlator to determine the intervals of frequency where the spectral density is enhanced or depleted by thermal effects. We find evidence that the thermal spectral density is non-zero for frequencies below the scalar glueball mass mm and is significantly depleted for mω3mm\lesssim\omega\lesssim 3m.Comment: (1+25) pages, 6 figure

    Removal of ecotoxicity of 17α-ethinylestradiol using TAML/peroxide water treatment

    Get PDF
    17α -ethinylestradiol (EE2), a synthetic oestrogen in oral contraceptives, is one of many pharmaceuticals found in inland waterways worldwide as a result of human consumption and excretion into wastewater treatment systems. At low parts per trillion (ppt), EE2 induces feminisation of male fish, diminishing reproductive success and causing fish population collapse. Intended water quality standards for EE2 set a much needed global precedent. Ozone and activated carbon provide effective wastewater treatments, but their energy intensities and capital/operating costs are formidable barriers to adoption. Here we describe the technical and environmental performance of a fast- developing contender for mitigation of EE2 contamination of wastewater based upon smallmolecule, full-functional peroxidase enzyme replicas called “TAML activators”. From neutral to basic pH, TAML activators with H2O2 efficiently degrade EE2 in pure lab water, municipal effluents and EE2-spiked synthetic urine. TAML/H2O2 treatment curtails estrogenicity in vitro and substantially diminishes fish feminization in vivo. Our results provide a starting point for a future process in which tens of thousands of tonnes of wastewater could be treated per kilogram of catalyst. We suggest TAML/H2O2 is a worthy candidate for exploration as an environmentally compatible, versatile, method for removing EE2 and other pharmaceuticals from municipal wastewaters.Heinz Endowments, the Swiss National Science Foundation, the Steinbrenner Institute for a Steinbrenner Doctoral Fellowship. NMR instrumentation at CMU was partially supported by NSF (CHE-0130903 and CHE-1039870)

    Tuning supersymmetric models at the LHC: A comparative analysis at two-loop level

    Get PDF
    We provide a comparative study of the fine tuning amount (Delta) at the two-loop leading log level in supersymmetric models commonly used in SUSY searches at the LHC. These are the constrained MSSM (CMSSM), non-universal Higgs masses models (NUHM1, NUHM2), non-universal gaugino masses model (NUGM) and GUT related gaugino masses models (NUGMd). Two definitions of the fine tuning are used, the first (Delta_{max}) measures maximal fine-tuning wrt individual parameters while the second (Delta_q) adds their contribution in "quadrature". As a direct result of two theoretical constraints (the EW minimum conditions), fine tuning (Delta_q) emerges as a suppressing factor (effective prior) of the averaged likelihood (under the priors), under the integral of the global probability of measuring the data (Bayesian evidence p(D)). For each model, there is little difference between Delta_q, Delta_{max} in the region allowed by the data, with similar behaviour as functions of the Higgs, gluino, stop mass or SUSY scale (m_{susy}=(m_{\tilde t_1} m_{\tilde t_2})^{1/2}) or dark matter and g-2 constraints. The analysis has the advantage that by replacing any of these mass scales or constraints by their latest bounds one easily infers for each model the value of Delta_q, Delta_{max} or vice versa. For all models, minimal fine tuning is achieved for M_{higgs} near 115 GeV with a Delta_q\approx Delta_{max}\approx 10 to 100 depending on the model, and in the CMSSM this is actually a global minimum. Due to a strong (\approx exponential) dependence of Delta on M_{higgs}, for a Higgs mass near 125 GeV, the above values of Delta_q\approx Delta_{max} increase to between 500 and 1000. Possible corrections to these values are briefly discussed.Comment: 23 pages, 46 figures; references added; some clarifications (section 2
    corecore