17 research outputs found

    The hOGG1 Ser326Cys polymorphism and prostate cancer risk: a meta-analysis of 2584 cases and 3234 controls

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genetic polymorphism of human 8-oxoguanine glycosylase 1 (hOGG1) Ser326Cys (rs1052133) has been implicated to alter the risk of prostate cancer, but the results are controversial.</p> <p>Methods</p> <p>Two investigators independently searched the Medline, and Cochrane Library up to June 7, 2011. Summary odds ratios (OR) and 95% confidence interval (CI) for Ser326Cys polymorphism and prostate cancer were calculated. Statistical analysis was performed with the software program Review Manage, version 5.0 and Stata 10.0.</p> <p>Results</p> <p>A total of 8 independent studies, including 2584 cases and 3234 controls, were identified. Our analysis suggested that Ser326Cys was not associated with prostate cancer risk in overall population. In the subgroup analysis, we detected the significant association between Ser326Cys polymorphism and decreased prostate risk in mixed population under additive model (OR = 0.67, 95% CI = 0.50-0.90, P = 0.007), recessive model (OR = 0.68, 95% CI = 0.51-0.91, P = 0.008), and Cys allele versus Ser allele (OR = 0.88, 95% CI = 0.78-0.98, P = 0.02). Subanalysis on Caucasian subjects demonstrated that Ser326Cys was not associated with prostate cancer risk.</p> <p>Conclusion</p> <p>This meta-analysis showed the evidence that hOGG1 Ser326Cys polymorphism was associated with a decreased risk of prostate cancer development in mixed populations.</p

    Cholangiocytes derived from human induced pluripotent stem cells for disease modeling and drug validation.

    Get PDF
    The study of biliary disease has been constrained by a lack of primary human cholangiocytes. Here we present an efficient, serum-free protocol for directed differentiation of human induced pluripotent stem cells into cholangiocyte-like cells (CLCs). CLCs show functional characteristics of cholangiocytes, including bile acids transfer, alkaline phosphatase activity, γ-glutamyl-transpeptidase activity and physiological responses to secretin, somatostatin and vascular endothelial growth factor. We use CLCs to model in vitro key features of Alagille syndrome, polycystic liver disease and cystic fibrosis (CF)-associated cholangiopathy. Furthermore, we use CLCs generated from healthy individuals and patients with polycystic liver disease to reproduce the effects of the drugs verapamil and octreotide, and we show that the experimental CF drug VX809 rescues the disease phenotype of CF cholangiopathy in vitro. Our differentiation protocol will facilitate the study of biological mechanisms controlling biliary development, as well as disease modeling and drug screening.This work was funded by ERC starting grant Relieve IMDs (L.V., N.H.), the Cambridge Hospitals National Institute for Health Research Biomedical Research Center (L.V., N.H., F.S.), the Evelyn trust (N.H.) and the EU Fp7 grant TissuGEN (M.CDB.). FS has been supported by an Addenbrooke’s Charitable Trust Clinical Research Training Fellowship and a joint MRC-Sparks Clinical Research Training Fellowship.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/nbt.327
    corecore