21 research outputs found

    Negative consequences associated with dependence in daily cannabis users

    Get PDF
    BACKGROUND: Cannabis is the most widely consumed illicit substance in America, with increasing rates of use. Some theorists tend to link frequency of use with cannabis dependence. Nevertheless, fewer than half of daily cannabis users meet DSM-IV-TR criteria for cannabis dependence. This study seeks to determine whether the negative aspects associated with cannabis use can be explained by a proxy measure of dependence instead of by frequency of use. RESULTS: Over 2500 adult daily cannabis users completed an Internet survey consisting of measures of cannabis and other drug use, in addition to measures of commonly reported negative problems resulting from cannabis use. We compared those who met a proxy measure of DSM-IV-TR criteria for cannabis dependence (N = 1111) to those who did not meet the criteria (N = 1770). Cannabis dependent subjects consumed greater amounts of cannabis, alcohol, and a variety of other drugs. They also had lower levels of motivation, happiness, and satisfaction with life, with higher levels of depression and respiratory symptoms. CONCLUSION: Although all of our subjects reported daily use, only those meeting proxy criteria for cannabis dependence reported significant associated problems. Our data suggest that dependence need not arise from daily use, but consuming larger amounts of cannabis and other drugs undoubtedly increases problems

    Clinical aspects of sentinel node biopsy

    Get PDF
    Sentinel lymph node (SLN) biopsy requires validation by a backup axillary dissection in a defined series of cases before becoming standard practice, to establish individual and institutional success rates and the frequency of false negative results. At least 90% success in finding the SLN with no more than 5-10% false negative results is a reasonable goal for surgeons and institutions learning the technique. A combination of isotope and dye to map the SLN is probably superior to either method used alone, yet a wide variety of technical variations in the procedure have produced a striking similarity of results. Most breast cancer patients are suitable for SLN biopsy, and the large majority reported to date has had clinical stage T1-2N0 invasive breast cancers. SLN biopsy will play a growing role in patients having prophylactic mastectomy, and in those with 'high-risk' duct carcinoma in situ, microinvasive cancers, T3 disease, and neoadjuvant chemotherapy. SLN biopsy for the first time makes enhanced pathologic analysis of lymph nodes logistically feasible, at once allowing greater staging accuracy and less morbidity than standard methods. Retrospective data suggest that micrometastases identified in this way are prognostically significant, and prospective clinical trials now accruing promise a definitive answer to this issue

    The Cysteine-Rich Interdomain Region from the Highly Variable Plasmodium falciparum Erythrocyte Membrane Protein-1 Exhibits a Conserved Structure

    Get PDF
    Plasmodium falciparum malaria parasites, living in red blood cells, express proteins of the erythrocyte membrane protein-1 (PfEMP1) family on the red blood cell surface. The binding of PfEMP1 molecules to human cell surface receptors mediates the adherence of infected red blood cells to human tissues. The sequences of the 60 PfEMP1 genes in each parasite genome vary greatly from parasite to parasite, yet the variant PfEMP1 proteins maintain receptor binding. Almost all parasites isolated directly from patients bind the human CD36 receptor. Of the several kinds of highly polymorphic cysteine-rich interdomain region (CIDR) domains classified by sequence, only the CIDR1α domains bind CD36. Here we describe the CD36-binding portion of a CIDR1α domain, MC179, as a bundle of three α-helices that are connected by a loop and three additional helices. The MC179 structure, containing seven conserved cysteines and 10 conserved hydrophobic residues, predicts similar structures for the hundreds of CIDR sequences from the many genome sequences now known. Comparison of MC179 with the CIDR domains in the genome of the P. falciparum 3D7 strain provides insights into CIDR domain structure. The CIDR1α three-helix bundle exhibits less than 20% sequence identity with the three-helix bundles of Duffy-binding like (DBL) domains, but the two kinds of bundles are almost identical. Despite the enormous diversity of PfEMP1 sequences, the CIDR1α and DBL protein structures, taken together, predict that a PfEMP1 molecule is a polymer of three-helix bundles elaborated by a variety of connecting helices and loops. From the structures also comes the insight that DBL1α domains are approximately 100 residues larger and that CIDR1α domains are approximately 100 residues smaller than sequence alignments predict. This new understanding of PfEMP1 structure will allow the use of better-defined PfEMP1 domains for functional studies, for the design of candidate vaccines, and for understanding the molecular basis of cytoadherence

    Specific Receptor Usage in Plasmodium falciparum Cytoadherence Is Associated with Disease Outcome

    Get PDF
    Our understanding of the basis of severe disease in malaria is incomplete. It is clear that pathology is in part related to the pro-inflammatory nature of the host response but a number of other factors are also thought to be involved, including the interaction between infected erythrocytes and endothelium. This is a complex system involving several host receptors and a major parasite-derived variant antigen (PfEMP1) expressed on the surface of the infected erythrocyte membrane. Previous studies have suggested a role for ICAM-1 in the pathology of cerebral malaria, although these have been inconclusive. In this study we have examined the cytoadherence patterns of 101 patient isolates from varying clinical syndromes to CD36 and ICAM-1, and have used variant ICAM-1 proteins to further characterise this adhesive phenotype. Our results show that increased binding to CD36 is associated with uncomplicated malaria while ICAM-1 adhesion is raised in parasites from cerebral malaria cases

    Signal transduction in Plasmodium-Red Blood Cells interactions and in cytoadherence

    Full text link

    Naturally acquired immune responses to P. vivax merozoite surface protein 3α and merozoite surface protein 9 are associated with reduced risk of P. vivax malaria in young Papua New Guinean children

    Get PDF
    Plasmodium vivax is the most geographically widespread human malaria parasite. Cohort studies in Papua New Guinea have identified a rapid onset of immunity against vivax-malaria in children living in highly endemic areas. Although numerous P. vivax merozoite antigens are targets of naturally acquired antibodies, the role of many of these antibodies in protective immunity is yet unknown.; In a cohort of children aged 1-3 years, antibodies to different regions of Merozoite Surface Protein 3α (PvMSP3α) and Merozoite Surface Protein 9 (PvMSP9) were measured and related to prospective risk of P. vivax malaria during 16 months of active follow-up. Overall, there was a low prevalence of antibodies to PvMSP3α and PvMSP9 proteins (9-65%). Antibodies to the PvMSP3α N-terminal, Block I and Block II regions increased significantly with age while antibodies to the PvMSP3α Block I and PvMSP9 N-terminal regions were positively associated with concurrent P. vivax infection. Independent of exposure (defined as the number of genetically distinct blood-stage infection acquired over time (molFOB)) and age, antibodies specific to both PvMSP3α Block II (adjusted incidence ratio (aIRR) = 0.59, p = 0.011) and PvMSP9 N-terminus (aIRR = 0.68, p = 0.035) were associated with protection against clinical P. vivax malaria. This protection was most pronounced against high-density infections. For PvMSP3α Block II, the effect was stronger with higher levels of antibodies.; These results indicate that PvMSP3α Block II and PvMSP9 N-terminus should be further investigated for their potential as P. vivax vaccine antigens. Controlling for molFOB assures that the observed associations are not confounded by individual differences in exposure

    Design and Immunogenicity of a Novel Synthetic Antigen Based on the Ligand Domain of the Plasmodium vivax Duffy Binding Protein

    No full text
    The Duffy binding protein is considered a leading vaccine candidate against asexual blood-stage Plasmodium vivax. The interaction of P. vivax merozoites with human reticulocytes through Duffy binding protein (DBP) and its cognate receptor is vital for parasite infection. The ligand domain of DBP (DBPII) is polymorphic, showing a diversity characteristic of selective immune pressure that tends to compromise vaccine efficacy associated with strain-specific immunity. A previous study resolved that a polymorphic region of DBPII was a dominant B-cell epitope target of human inhibitory anti-DBP antibodies, which we refer to as the DEK epitope for the amino acids in the SalI allele. We hypothesized that the polymorphic residues, which are not functionally important for erythrocyte binding but flank the receptor binding motif of DBPII, comprise variant epitopes that tend to divert the immune response away from more conserved epitopes. In this study, we designed, expressed, and evaluated the immunogenicity of a novel artificial DBPII allele, termed DEKnull, having nonpolar amino acids in the naturally occurring polymorphic charged residues of the DEK epitope. The DEKnull antigen retained erythrocyte-binding activity and elicited antibodies to shared epitopes of SalI DBPII from which it was derived. Our results confirmed that removal of the dominant variant epitope in the DEKnull vaccine lowered immunogenicity of DBPII, but inhibitory anti-DBPII antibodies were elicited against shared neutralizing epitopes on SalI. Focusing immune responses toward more conserved DBP epitopes may avoid development of a strain-specific immunity and enhance functional inhibition against broader range of DBPII variants
    corecore