511 research outputs found
Simple and Realistic Composite Higgs Models in Flat Extra Dimensions
We construct new composite Higgs/gauge-Higgs unification (GHU) models in flat
space that overcome all the difficulties found in the past in attempting to
construct models of this sort. The key ingredient is the introduction of large
boundary kinetic terms for gauge (and fermion) fields. We focus our analysis on
the electroweak symmetry breaking pattern and the electroweak precision tests
and show how both are compatible with each other. Our models can be seen as
effective TeV descriptions of analogue warped models. We point out that, as far
as electroweak TeV scale physics is concerned, one can rely on simple and more
flexible flat space models rather than considering their unavoidably more
complicated warped space counterparts. The generic collider signatures of our
models are essentially undistinguishable from those expected from composite
Higgs/warped GHU models, namely a light Higgs, colored fermion resonances below
the TeV scale and sizable deviations to the Higgs and top coupling.Comment: 30 figures, 9 figures; v2: minor improvements, one reference added,
version to appear in JHE
Tuning supersymmetric models at the LHC: A comparative analysis at two-loop level
We provide a comparative study of the fine tuning amount (Delta) at the
two-loop leading log level in supersymmetric models commonly used in SUSY
searches at the LHC. These are the constrained MSSM (CMSSM), non-universal
Higgs masses models (NUHM1, NUHM2), non-universal gaugino masses model (NUGM)
and GUT related gaugino masses models (NUGMd). Two definitions of the fine
tuning are used, the first (Delta_{max}) measures maximal fine-tuning wrt
individual parameters while the second (Delta_q) adds their contribution in
"quadrature". As a direct result of two theoretical constraints (the EW minimum
conditions), fine tuning (Delta_q) emerges as a suppressing factor (effective
prior) of the averaged likelihood (under the priors), under the integral of the
global probability of measuring the data (Bayesian evidence p(D)). For each
model, there is little difference between Delta_q, Delta_{max} in the region
allowed by the data, with similar behaviour as functions of the Higgs, gluino,
stop mass or SUSY scale (m_{susy}=(m_{\tilde t_1} m_{\tilde t_2})^{1/2}) or
dark matter and g-2 constraints. The analysis has the advantage that by
replacing any of these mass scales or constraints by their latest bounds one
easily infers for each model the value of Delta_q, Delta_{max} or vice versa.
For all models, minimal fine tuning is achieved for M_{higgs} near 115 GeV with
a Delta_q\approx Delta_{max}\approx 10 to 100 depending on the model, and in
the CMSSM this is actually a global minimum. Due to a strong (
exponential) dependence of Delta on M_{higgs}, for a Higgs mass near 125 GeV,
the above values of Delta_q\approx Delta_{max} increase to between 500 and
1000. Possible corrections to these values are briefly discussed.Comment: 23 pages, 46 figures; references added; some clarifications (section
2
The impact of the ATLAS zero-lepton, jets and missing momentum search on a CMSSM fit
Recent ATLAS data significantly extend the exclusion limits for
supersymmetric particles. We examine the impact of such data on global fits of
the constrained minimal supersymmetric standard model (CMSSM) to indirect and
cosmological data. We calculate the likelihood map of the ATLAS search, taking
into account systematic errors on the signal and on the background. We validate
our calculation against the ATLAS determinaton of 95% confidence level
exclusion contours. A previous CMSSM global fit is then re-weighted by the
likelihood map, which takes a bite at the high probability density region of
the global fit, pushing scalar and gaugino masses up.Comment: 16 pages, 7 figures. v2 has bigger figures and fixed typos. v3 has
clarified explanation of our handling of signal systematic
Composite GUTs: models and expectations at the LHC
We investigate grand unified theories (GUTs) in scenarios where electroweak
(EW) symmetry breaking is triggered by a light composite Higgs, arising as a
Nambu-Goldstone boson from a strongly interacting sector. The evolution of the
standard model (SM) gauge couplings can be predicted at leading order, if the
global symmetry of the composite sector is a simple group G that contains the
SM gauge group. It was noticed that, if the right-handed top quark is also
composite, precision gauge unification can be achieved. We build minimal
consistent models for a composite sector with these properties, thus
demonstrating how composite GUTs may represent an alternative to supersymmetric
GUTs. Taking into account the new contributions to the EW precision parameters,
we compute the Higgs effective potential and prove that it realizes
consistently EW symmetry breaking with little fine-tuning. The G group
structure and the requirement of proton stability determine the nature of the
light composite states accompanying the Higgs and the top quark: a coloured
triplet scalar and several vector-like fermions with exotic quantum numbers. We
analyse the signatures of these composite partners at hadron colliders:
distinctive final states contain multiple top and bottom quarks, either alone
or accompanied by a heavy stable charged particle, or by missing transverse
energy.Comment: 55 pages, 13 figures, final version to be published in JHE
Holographic metastability
We show how supersymmetric QCD in a slice of AdS can naturally acquire
metastable vacua. The formulation closely follows that of Intriligator, Seiberg
and Shih (ISS), with an "electric" sector on the UV brane and a "magnetic"
sector on the IR brane. However the 't Hooft anomaly matching that constrains
the Seiberg duality central to ISS is replaced by anomaly inflow and
cancellation, and the source of strong coupling is the CFT to which the theory
couples rather than the gauge groups. The theory contains an anomaly free
R-symmetry that, when broken by UV effects, leads to an O'Raifeartaigh model on
the IR brane. In contrast to ISS, the R-symmetry breaking in the UV can be
maximal, and yet the R-symmetry breaking in the IR theory remains under strict
control: there is no need for retrofitting of small parameters.Comment: 20 pages, 2 figure
Mass-Matching in Higgsless
Modern extra-dimensional Higgsless scenarios rely on a mass-matching between
fermionic and bosonic KK resonances to evade constraints from precision
electroweak measurements. After analyzing all of the Tevatron and LEP bounds on
these so-called Cured Higgsless scenarios, we study their LHC signatures and
explore how to identify the mass-matching mechanism, the key to their
viability. We find singly and pair produced fermionic resonances show up as
clean signals with 2 or 4 leptons and 2 hard jets, while neutral and charged
bosonic resonances are visible in the dilepton and leptonic WZ channels,
respectively. A measurement of the resonance masses from these channels shows
the matching necessary to achieve . Moreover, a large single
production of KK-fermion resonances is a clear indication of compositeness of
SM quarks. Discovery reach is below 10 fb of luminosity for resonances
in the 700 GeV range.Comment: 28 pages, 18 figure
Suppressing Electroweak Precision Observables in 5D Warped Models
We elaborate on a recently proposed mechanism to suppress large contributions
to the electroweak precision observables in five dimensional (5D) warped
models, without the need for an extended 5D gauge sector. The main ingredient
is a modification of the AdS metric in the vicinity of the infrared (IR) brane
corresponding to a strong deviation from conformality in the IR of the 4D
holographic dual. We compute the general low energy effective theory of the 5D
warped Standard Model, emphasizing additional IR contributions to the wave
function renormalization of the light Higgs mode. We also derive expressions
for the S and T parameters as a function of a generic 5D metric and zero-mode
wave functions. We give an approximate formula for the mass of the radion that
works even for strong deviation from the AdS background. We proceed to work out
the details of an explicit model and derive bounds for the first KK masses of
the various bulk fields. The radion is the lightest new particle although its
mass is already at about 1/3 of the mass of the lightest resonances, the KK
states of the gauge bosons. We examine carefully various issues that can arise
for extreme choices of parameters such as the possible reintroduction of the
hierarchy problem, the onset of nonperturbative physics due to strong IR
curvature or the creation of new hierarchies near the Planck scale. We conclude
that a KK scale of 1 TeV is compatible with all these constraints.Comment: 44 pages, 11 figures, references adde
A slice of AdS_5 as the large N limit of Seiberg duality
A slice of AdS_5 is used to provide a 5D gravitational description of 4D
strongly-coupled Seiberg dual gauge theories. An (electric) SU(N) gauge theory
in the conformal window at large N is described by the 5D bulk, while its
weakly coupled (magnetic) dual is confined to the IR brane. This framework can
be used to construct an N = 1 MSSM on the IR brane, reminiscent of the original
Randall-Sundrum model. In addition, we use our framework to study
strongly-coupled scenarios of supersymmetry breaking mediated by gauge forces.
This leads to a unified scenario that connects the extra-ordinary gauge
mediation limit to the gaugino mediation limit in warped space.Comment: 47 Pages, axodraw4j.st
Flavour Physics in the Soft Wall Model
We extend the description of flavour that exists in the Randall-Sundrum (RS)
model to the soft wall (SW) model in which the IR brane is removed and the
Higgs is free to propagate in the bulk. It is demonstrated that, like the RS
model, one can generate the hierarchy of fermion masses by localising the
fermions at different locations throughout the space. However, there are two
significant differences. Firstly the possible fermion masses scale down, from
the electroweak scale, less steeply than in the RS model and secondly there now
exists a minimum fermion mass for fermions sitting towards the UV brane. With a
quadratic Higgs VEV, this minimum mass is about fifteen orders of magnitude
lower than the electroweak scale. We derive the gauge propagator and despite
the KK masses scaling as , it is demonstrated that the
coefficients of four fermion operators are not divergent at tree level. FCNC's
amongst kaons and leptons are considered and compared to calculations in the RS
model, with a brane localised Higgs and equivalent levels of tuning. It is
found that since the gauge fermion couplings are slightly more universal and
the SM fermions typically sit slightly further towards the UV brane, the
contributions to observables such as and , from the
exchange of KK gauge fields, are significantly reduced.Comment: 33 pages, 15 figures, 5 tables; v2: references added; v3:
modifications to figures 4,5 and 6. version to appear in JHE
Neutralino versus axion/axino cold dark matter in the 19 parameter SUGRA model
We calculate the relic abundance of thermally produced neutralino cold dark
matter in the general 19 parameter supergravity (SUGRA-19) model. A scan over
GUT scale parameters reveals that models with a bino-like neutralino typically
give rise to a dark matter density \Omega_{\tz_1}h^2\sim 1-1000, i.e. between 1
and 4 orders of magnitude higher than the measured value. Models with higgsino
or wino cold dark matter can yield the correct relic density, but mainly for
neutralino masses around 700-1300 GeV. Models with mixed bino-wino or
bino-higgsino CDM, or models with dominant co-annihilation or A-resonance
annihilation can yield the correct abundance, but such cases are extremely hard
to generate using a general scan over GUT scale parameters; this is indicative
of high fine-tuning of the relic abundance in these cases. Requiring that
m_{\tz_1}\alt 500 GeV (as a rough naturalness requirement) gives rise to a
minimal probably dip in parameter space at the measured CDM abundance. For
comparison, we also scan over mSUGRA space with four free parameters. Finally,
we investigate the Peccei-Quinn augmented MSSM with mixed axion/axino cold dark
matter. In this case, the relic abundance agrees more naturally with the
measured value. In light of our cumulative results, we conclude that future
axion searches should probe much more broadly in axion mass, and deeper into
the axion coupling.Comment: 23 pages including 17 .eps figure
- …