52 research outputs found

    Gastric transit and small intestinal transit time and motility assessed by a magnet tracking system

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tracking an ingested magnet by the Magnet Tracking System MTS-1 (Motilis, Lausanne, Switzerland) is an easy and minimally-invasive method to assess gastrointestinal transit. The aim was to test the validity of MTS-1 for assessment of gastric transit time and small intestinal transit time, and to illustrate transit patterns detected by the system.</p> <p>Methods</p> <p>A small magnet was ingested and tracked by an external matrix of 16 magnetic field sensors (4 × 4) giving a position defined by 5 coordinates (position: <b>x, y, z, and angle: θ, ϕ)</b>. Eight healthy subjects were each investigated three times: (1) with a small magnet mounted on a capsule endoscope (PillCam); (2) with the magnet alone and the small intestine in the fasting state; and (3) with the magnet alone and the small intestine in the postprandial state.</p> <p>Results</p> <p>Experiment (1) showed good agreement and no systematic differences between MTS-1 and capsule endoscopy when assessing gastric transit (median difference 1 min; range: 0-6 min) and small intestinal transit time (median difference 0.5 min; range: 0-52 min). Comparing experiments (1) and (2) there were no systematic differences in gastric transit or small intestinal transit when using the magnet-PillCam unit and the much smaller magnetic pill. In experiments (2) and (3), short bursts of very fast movements lasting less than 5% of the time accounted for more than half the distance covered during the first two hours in the small intestine, irrespective of whether the small intestine was in the fasting or postprandial state. The mean contraction frequency in the small intestine was significantly lower in the fasting state than in the postprandial state (9.90 min<sup>-1 </sup>vs. 10.53 min<sup>-1</sup>) (p = 0.03).</p> <p>Conclusion</p> <p>MTS-1 is reliable for determination of gastric transit and small intestinal transit time. It is possible to distinguish between the mean contraction frequency of small intestine in the fasting state and in the postprandial state.</p

    Reproducible, Ultra High-Throughput Formation of Multicellular Organization from Single Cell Suspension-Derived Human Embryonic Stem Cell Aggregates

    Get PDF
    Background: Human embryonic stem cells (hESC) should enable novel insights into early human development and provide a renewable source of cells for regenerative medicine. However, because the three-dimensional hESC aggregates [embryoid bodies (hEB)] typically employed to reveal hESC developmental potential are heterogeneous and exhibit disorganized differentiation, progress in hESC technology development has been hindered. Methodology/Principal Findings: Using a centrifugal forced-aggregation strategy in combination with a novel centrifugalextraction approach as a foundation, we demonstrated that hESC input composition and inductive environment could be manipulated to form large numbers of well-defined aggregates exhibiting multi-lineage differentiation and substantially improved self-organization from single-cell suspensions. These aggregates exhibited coordinated bi-domain structures including contiguous regions of extraembryonic endoderm- and epiblast-like tissue. A silicon wafer-based microfabrication technology was used to generate surfaces that permit the production of hundreds to thousands of hEB per cm 2. Conclusions/Significance: The mechanisms of early human embryogenesis are poorly understood. We report an ultra high throughput (UHTP) approach for generating spatially and temporally synchronised hEB. Aggregates generated in this manner exhibited aspects of peri-implantation tissue-level morphogenesis. These results should advance fundamental studies into early human developmental processes, enable high-throughput screening strategies to identify conditions tha

    Role of Synucleins in Alzheimer’s Disease

    Get PDF
    Alzheimer’s disease (AD) and Parkinson’s disease (PD) are the most common causes of dementia and movement disorders in the elderly. While progressive accumulation of oligomeric amyloid-β protein (Aβ) has been identified as one of the central toxic events in AD leading to synaptic dysfunction, accumulation of α-synuclein (α-syn) resulting in the formation of oligomers has been linked to PD. Most of the studies in AD have been focused on investigating the role of Aβ and Tau; however, recent studies suggest that α-syn might also play a role in the pathogenesis of AD. For example, fragments of α-syn can associate with amyloid plaques and Aβ promotes the aggregation of α-syn in vivo and worsens the deficits in α-syn tg mice. Moreover, α-syn has also been shown to accumulate in limbic regions in AD, Down’s syndrome, and familial AD cases. Aβ and α-syn might directly interact under pathological conditions leading to the formation of toxic oligomers and nanopores that increase intracellular calcium. The interactions between Aβ and α-syn might also result in oxidative stress, lysosomal leakage, and mitochondrial dysfunction. Thus, better understanding the steps involved in the process of Aβ and α-syn aggregation is important in order to develop intervention strategies that might prevent or reverse the accumulation of toxic proteins in AD

    Association of drinking-water source and use characteristics with urinary antimony concentrations

    No full text
    Environmental factors, such as storage time, frequency of bottle reuse and temperature, have been shown to facilitate antimony (Sb) leaching from water- and food-packaging materials. The globally escalating consumption of water packaged in Sb-containing bottles, such as that of polyethylene terephthalate (PET), could increase human daily Sb doses. This study set out to investigate the relationship between drinking-water source, use characteristics, and urinary Sb concentrations (U-Sb) accompanied with survey responses of a healthy (n=35) Cypriot participant pool. One spot urine sample was collected during administration of questionnaire, while a second spot urine sample was collected from the same individual about 7 days later. Urinary and water Sb concentrations were measured with an inductively coupled plasma mass spectrometer. Survey responses showed that bottled water summed over various volumes and plastic types, such as polycarbonate and PET contributed to an average 61% of daily water consumption. Water sources such as tap, mobile stations (explained in a following section), and well water contributed to 24%, 14%, and 2% of an individual's daily water consumption pattern, respectively. Average daily potable water use of both bottled and tap water by individuals consisted of 65% drinking-water, while the remaining 35% was water used for preparing cold and hot beverages, such as, tea, coffee, and juices. A significant (P=0.02) association between per capita water consumption from PET bottles and urinary creatinine-unadjusted concentrations was observed, but this relationship did not remain after inclusion of covariates in a multivariate regression model. In the creatinine-adjusted regression model, only gender (female) was a significant (P<0.01) predictor of U-Sb, after adjusting for several covariates. It is proposed that consumption data collection on various water uses and sources among individuals could perhaps decrease the uncertainty associated with derivations of acceptable daily Sb intakes

    Organocopper complexes during roxarsone degradation in wastewater lagoons

    No full text
    Background, aim, and scope: Organoarsenical-containing animal feeds that promote growth and resistance to parasites are mostly excreted unchanged, ending up in nearby wastewater storage lagoons. Earlier work documented the partial transformation of organoarsenicals, such as, 3-nitro-4-hydroxyphenylarsonic acid (roxarsone) to the more toxic inorganic arsenate [As(V)] and 3-amino-4-hydroxyphenylarsonic acid (3-AHPAA). Unidentified roxarsone metabolites using liquid chromatography coupled to inductively coupled plasma mass spectrometry (LC/ICP-MS) were also inferred from the corresponding As mass balance. Earlier batch experiments in our laboratory suggested the presence of organometallic (Cu) complexes during relevant roxarsone degradation experiments. We hypothesized that organocopper compounds were complexed to roxarsone, mediating its degradation in field-collected swine wastewater samples from storage lagoons. The objective of this study was to investigate the role of organometallic (Cu) complexes during roxarsone degradation under aerobic conditions in swine wastewater suspensions, using electrospray ionization mass spectrometry (ES-MS). Materials and methods: Two swine wastewater samples differing in % solids content and total recoverable Cu concentrations were reacted with 500 ppb of roxarsone under aerobic conditions for 16 days. LC/ICP-MS and ES-MS were used for As speciation analyses, and characterization of metal-organoarsenical complexes in swine wastewater subsamples, respectively. Results and discussion: An organocopper roxarsone metabolite was found only in the high-Cu wastewater sample, suggesting the role of Cu in roxarsone degradation under aerobic conditions. The organocopper metabolite was not found in the low-Cu wastewater sample, because roxarsone did not undergo degradation under aerobic conditions even after 16 days. Conclusions: Aerobic degradation of organoarsenicals (roxarsone) has not been documented before. Preliminary dataset from this study illustrates the direct and/or indirect association of particulate Cu in catalyzing roxarsone degradation under aerobic conditions in samples with high % solids content. Recommendations and perspectives: Concerns regarding the degradation of roxarsone in wastewater to the more toxic inorganic As may be partially linked to the presence of particulate Cu. The presence of Cu in wastewater-suspended particle surfaces has never been coupled before to organoarsenicals degradation reactions, thus, further studies are needed to elucidate the related reaction mechanisms and pathways. Water depth-dependent solid particle distribution profiles in wastewater storage lagoons could provide empirical evidence towards the design of effective degradation practices for nitrophenol-containing compounds, such as, organoarsenical-containing antibiotics, or explosive munitions compounds

    Uptake of 2,4-bis(Isopropylamino)-6-methylthio-s-triazine by Vetiver Grass (Chrysopogon zizanioides L.) from Hydroponic Media

    No full text
    2,4-bis(Isopropylamino)-6-methylthio-s-triazine (prometryn) poses a risk to aquatic environments in several countries, including China, where its use is widespread, particularly due to its chemical stability and biological toxicity. Vetiver grass (Chrysopogon zizanioides L.) was tested for its potential for phytoremediation of prometryn. Vetiver grass was grown in hydroponic media in a greenhouse, in the presence of prometryn, with appropriate controls. Plant uptake and removal of prometryn from the media were monitored for a period of 67 days. The results showed that the removal of the prometryn in the media was expedited by vetiver grass. The removal half-life (t1/2) was shortened by 11.5 days. Prometryn removal followed first-order kinetics (Ct = 1.8070e-0.0601t). This study demonstrated the potential of vetiver grass for the phytoremediation for prometryn
    corecore