20 research outputs found

    Analysis of gene expression profiles in HeLa cells in response to overexpression or siRNA-mediated depletion of NASP

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>NASP (Nuclear Autoantigenic Sperm Protein) is a linker histone chaperone required for normal cell division. Changes in NASP expression significantly affect cell growth and development; loss of gene function results in embryonic lethality. However, the mechanism by which NASP exerts its effects in the cell cycle is not understood. To understand the pathways and networks that may involve NASP function, we evaluated gene expression in HeLa cells in which NASP was either overexpressed or depleted by siRNA.</p> <p>Methods</p> <p>Total RNA from HeLa cells overexpressing NASP or depleted of NASP by siRNA treatment was converted to cRNA with incorporation of Cy5-CTP (experimental samples), or Cy3-CTP (control samples). The labeled cRNA samples were hybridized to whole human genome microarrays (Agilent Technologies, Wilmington, Delaware, USA). Various gene expression analysis techniques were employed: Significance Analysis of Microarrays (SAM), Expression Analysis Systematic Explorer (EASE), and Ingenuity Pathways Analysis (IPA).</p> <p>Results</p> <p>From approximately 36 thousand genes present in a total human genome microarray, we identified a set of 47 up-regulated and 7 down-regulated genes as a result of NASP overexpression. Similarly we identified a set of 56 up-regulated and 71 down-regulated genes as a result of NASP siRNA treatment. Gene ontology, molecular network and canonical pathway analysis of NASP overexpression demonstrated that the most significant changes were in proteins participating in organismal injury, immune response, and cellular growth and cancer pathways (major "hubs": TNF, FOS, EGR1, NFκB, IRF7, STAT1, IL6). Depletion of NASP elicited the changed expression of proteins involved in DNA replication, repair and development, followed by reproductive system disease, and cancer and cell cycle pathways (major "hubs": E2F8, TP53, FGF, FSH, FST, hCG, NFκB, TRAF6).</p> <p>Conclusion</p> <p>This study has demonstrated that NASP belongs to a network of genes and gene functions that are critical for cell survival. We have confirmed the previously reported interactions between NASP and HSP90, HSP70, histone H1, histone H3, and TRAF6. Overexpression and depletion of NASP identified overlapping networks that included TNF as a core protein, confirming that both high and low levels of NASP are detrimental to cell cycle progression. Networks with cancer-related functions had the highest significance, however reproductive networks containing follistatin and FSH were also significantly affected, which confirmed NASP's important role in reproductive tissues. This study revealed that, despite some overlap, each response was associated with a unique gene signature and placed NASP in important cell regulatory networks.</p

    Angle tunable trapped mode in a THz metamaterial

    Get PDF
    We report trapped mode in Fano-like resonance in a terahertz (THz) metameterial (MM) consisting of a concentric circular and elliptical gold rings on semi-insulating GaAs substrate. We present the finite element method (FEM) based design, electron beam lithography based fabrication and 0.2-2 THz window spectroscopic results. The trapped mode of the MM can be tuned by the angle between the major axis of the ellipse and the polarization of incident THz electric field (maximum amplitude similar to 100V/m)

    Quadrupole-Quadrupole Interactions to Control Plasmon-Induced Transparency

    No full text
    Radiative dipolar resonance with Lorentzian line-shape induces the otherwise dark quadrupolar resonances resulting in electromagnetically induced transparency (EIT). The two interfering excitation pathways of the dipole are earlier shown to result in a Fano line shape with a high figure of merit suitable for sensing. In metamaterials made of metal nanorods or antennas, the plasmonic EIT (PIT) efficiency depends on the overlap of the dark and bright mode spectra as well as the asymmetry resulting from the separation between the monomer (dipole) and dimer (quadrupole) that governs the coupling strength. Increasing asymmetry in these structures leads to the reduction of the figure of merit due to a broadening of the Fano resonance. We demonstrate a PIT system in which the simultaneous excitation of two dipoles result in double PIT. The corresponding two quadrupoles interact and control the quality factor (Q) of the PIT resonance. We show an antiresonancelike symmetric line shape with nonzero asymmetry factors. The PIT resonance vanishes due to quadrupole-quadrupole coupling. A Q factor of more than 100 at 0.977 THz is observed, which is limited by the experimental resolution of 6 GHz. From polarization-dependent studies we show that the broadening of the Lorentzian resonance is due to scattering-induced excitation of orthogonally oriented dipoles in the monomer and dimer bars in the terahertz regime. The high Q factors in the terahertz frequency region demonstrated here are interesting for sensing application

    Sensing at terahertz frequency domain using a sapphire whispering gallery mode resonator

    No full text
    In this Letter, we experimentally demonstrate a terahertz (THz) whispering gallery mode (WGM) sensor based on a sapphire WGM resonator. The fundamental mode at 129.49 GHz with a Q-factor of 4.63 x 10(3) is used to study its sensitivity to adsorbed molecules. The efficiency of our sensor to detect rhodamine 6G dye molecules in a polyvinyl alcohol matrix at room temperature has been manifested, and a detection sensitivity of 25 parts per million has been achieved. Also, we report an analytical approach based on coupled-mode theory between the waveguide mode and the spherical resonator mode to evaluate the absorption coefficient of the adsorbed molecule on the resonator. The model is modified to evaluate optical constants of materials. The results obtained have been verified by continuous-wave THz transmission results. The results are of importance in sensing, metrology, and material characterization. (C) 2018 Optical Society of Americ

    Pattern and Peel method for fabricating mechanically tunable terahertz metasurface on an elastomeric substrate

    No full text
    In this article, we explore a mechanically tunable metasurface on an elastic polydimethylsiloxane (PDMS) membrane operating at Terahertz (THz) frequencies synthesized using a "pattern and peel fabrication" technique. The tunability of the metasurface is based on the change of physical dimensions of the individual micro-structures due to the strain caused by mechanical stretching. The novelty of this technique is the ability to use high resolution e-beam patterning in contrast to established screen-printing techniques reported in the literature. The metasurface studied in this article is a periodic lattice of split-ring structures resonant at THz frequencies. The effect of mechanical stretching on the response of the metasurface is investigated thoroughly through experiments and numerical simulations. The response of the metamaterial to stretching manifests as a shift in the higher order mode by similar to 12% for an applied strain of similar to 25%. This tunability of the spectral response with macroscopic strain is not only substantial for the given structure, but also follows a linear behavior. This device can have potential applications in communications technology, remote strain sensing, chemical and biological sensing. (C) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreemen
    corecore