52 research outputs found

    African Americans, Gentrification, and Neoliberal Urbanization: the Case of Fort Greene, Brooklyn

    Get PDF
    This article examines the gentrification of Fort Greene, which is located in the western part of black Brooklyn, one of the largest contiguous black urban areas in the USA. Between the late 1960s and 2003, gentrification in Fort Greene followed the patterns discovered by scholars of black neighborhoods; the gentrifying agents were almost exclusively black and gentrification as a process was largely bottom-up because entities interested in the production of space were mostly not involved. Since 2003, this has changed. Whites have been moving to Fort Greene in large numbers and will soon represent the numerical majority. Public and private interventions in and around Fort Greene have created a new top-down version of gentrification, which is facilitating this white influx. Existing black residential and commercial tenants are replaced and displaced in the name of urban economic development

    Metabolic Turnover of Synaptic Proteins: Kinetics, Interdependencies and Implications for Synaptic Maintenance

    Get PDF
    Chemical synapses contain multitudes of proteins, which in common with all proteins, have finite lifetimes and therefore need to be continuously replaced. Given the huge numbers of synaptic connections typical neurons form, the demand to maintain the protein contents of these connections might be expected to place considerable metabolic demands on each neuron. Moreover, synaptic proteostasis might differ according to distance from global protein synthesis sites, the availability of distributed protein synthesis facilities, trafficking rates and synaptic protein dynamics. To date, the turnover kinetics of synaptic proteins have not been studied or analyzed systematically, and thus metabolic demands or the aforementioned relationships remain largely unknown. In the current study we used dynamic Stable Isotope Labeling with Amino acids in Cell culture (SILAC), mass spectrometry (MS), Fluorescent Non-Canonical Amino acid Tagging (FUNCAT), quantitative immunohistochemistry and bioinformatics to systematically measure the metabolic half-lives of hundreds of synaptic proteins, examine how these depend on their pre/postsynaptic affiliation or their association with particular molecular complexes, and assess the metabolic load of synaptic proteostasis. We found that nearly all synaptic proteins identified here exhibited half-lifetimes in the range of 2-5 days. Unexpectedly, metabolic turnover rates were not significantly different for presynaptic and postsynaptic proteins, or for proteins for which mRNAs are consistently found in dendrites. Some functionally or structurally related proteins exhibited very similar turnover rates, indicating that their biogenesis and degradation might be coupled, a possibility further supported by bioinformatics-based analyses. The relatively low turnover rates measured here (∼0.7% of synaptic protein content per hour) are in good agreement with imaging-based studies of synaptic protein trafficking, yet indicate that the metabolic load synaptic protein turnover places on individual neurons is very substantial
    corecore