439 research outputs found

    Shigella sonnei genome sequencing and phylogenetic analysis indicate recent global dissemination from Europe

    Get PDF
    Shigella are human-adapted Escherichia coli that have gained the ability to invade the human gut mucosa and cause dysentery1,2, spreading efficiently via low-dose fecal-oral transmission3,4. Historically, S. sonnei has been predominantly responsible for dysentery in developed countries, but is now emerging as a problem in the developing world, apparently replacing the more diverse S. flexneri in areas undergoing economic development and improvements in water quality4-6. Classical approaches have shown S. sonnei is genetically conserved and clonal7. We report here whole-genome sequencing of 132 globally-distributed isolates. Our phylogenetic analysis shows that the current S. sonnei population descends from a common ancestor that existed less than 500 years ago and has diversified into several distinct lineages with unique characteristics. Our analysis suggests the majority of this diversification occurred in Europe, followed by more recent establishment of local pathogen populations in other continents predominantly due to the pandemic spread of a single, rapidly-evolving, multidrug resistant lineage

    Mining Virulence Genes Using Metagenomics

    Get PDF
    When a bacterial genome is compared to the metagenome of an environment it inhabits, most genes recruit at high sequence identity. In free-living bacteria (for instance marine bacteria compared against the ocean metagenome) certain genomic regions are totally absent in recruitment plots, representing therefore genes unique to individual bacterial isolates. We show that these Metagenomic Islands (MIs) are also visible in bacteria living in human hosts when their genomes are compared to sequences from the human microbiome, despite the compartmentalized structure of human-related environments such as the gut. From an applied point of view, MIs of human pathogens (e.g. those identified in enterohaemorragic Escherichia coli against the gut metagenome or in pathogenic Neisseria meningitidis against the oral metagenome) include virulence genes that appear to be absent in related strains or species present in the microbiome of healthy individuals. We propose that this strategy (i.e. recruitment analysis of pathogenic bacteria against the metagenome of healthy subjects) can be used to detect pathogenicity regions in species where the genes involved in virulence are poorly characterized. Using this approach, we detect well-known pathogenicity islands and identify new potential virulence genes in several human pathogens

    A Mouse Model of Post-Arthroplasty Staphylococcus aureus Joint Infection to Evaluate In Vivo the Efficacy of Antimicrobial Implant Coatings

    Get PDF
    Post-arthroplasty infections represent a devastating complication of total joint replacement surgery, resulting in multiple reoperations, prolonged antibiotic use, extended disability and worse clinical outcomes. As the number of arthroplasties in the U.S. will exceed 3.8 million surgeries per year by 2030, the number of post-arthroplasty infections is projected to increase to over 266,000 infections annually. The treatment of these infections will exhaust healthcare resources and dramatically increase medical costs.To evaluate novel preventative therapeutic strategies against post-arthroplasty infections, a mouse model was developed in which a bioluminescent Staphylococcus aureus strain was inoculated into a knee joint containing an orthopaedic implant and advanced in vivo imaging was used to measure the bacterial burden in real-time. Mice inoculated with 5x10(3) and 5x10(4) CFUs developed increased bacterial counts with marked swelling of the affected leg, consistent with an acute joint infection. In contrast, mice inoculated with 5x10(2) CFUs developed a low-grade infection, resembling a more chronic infection. Ex vivo bacterial counts highly correlated with in vivo bioluminescence signals and EGFP-neutrophil fluorescence of LysEGFP mice was used to measure the infection-induced inflammation. Furthermore, biofilm formation on the implants was visualized at 7 and 14 postoperative days by variable-pressure scanning electron microscopy (VP-SEM). Using this model, a minocycline/rifampin-impregnated bioresorbable polymer implant coating was effective in reducing the infection, decreasing inflammation and preventing biofilm formation.Taken together, this mouse model may represent an alternative pre-clinical screening tool to evaluate novel in vivo therapeutic strategies before studies in larger animals and in human subjects. Furthermore, the antibiotic-polymer implant coating evaluated in this study was clinically effective, suggesting the potential for this strategy as a therapeutic intervention to combat post-arthroplasty infections

    Current status and recommendations for biomarkers and biobanking in neurofibromatosis

    Get PDF
    Objective: Clinically validated biomarkers for neurofibromatosis 1 (NF1), neurofibromatosis 2 (NF2), and schwannomatosis (SWN) have not been identified to date. The biomarker working group's goals are to (1) define biomarker needs in NF1, NF2, and SWN; (2) summarize existing data on biomarkers in NF1, NF2, and SWN; (3) outline recommendations for sample collection and biomarker development; and (4) standardize sample collection and methodology protocols where possible to promote comparison between studies by publishing standard operating procedures (SOPs). Methods: The biomarker group reviewed published data on biomarkers in NF1, NF2, and SWN and on biobanking efforts outside these diseases via literature search, defined the need for biomarkers in NF, and developed recommendations in a series of consensus meetings. Results: We describe existing biomarkers in NF and report consensus recommendations for SOP and a minimal clinical dataset to accompany samples derived from patients with NF1, NF2, and SWN in decentralized biobanks. Conclusions: These recommendations are intended to provide clinicians and researchers with a common set of guidelines to collect and store biospecimens and for establishment of biobanks for NF1, NF2, and SWN.N

    Relationships among neurocognition, symptoms and functioning in patients with schizophrenia: a path-analytic approach for associations at baseline and following 24 weeks of antipsychotic drug therapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neurocognitive impairment and psychiatric symptoms have been associated with deficits in psychosocial and occupational functioning in patients with schizophrenia. This post-hoc analysis evaluates the relationships among cognition, psychopathology, and psychosocial functioning in patients with schizophrenia at baseline and following sustained treatment with antipsychotic drugs.</p> <p>Methods</p> <p>Data were obtained from a clinical trial assessing the cognitive effects of selected antipsychotic drugs in patients with schizophrenia. Patients were randomly assigned to 24 weeks of treatment with olanzapine (n = 159), risperidone (n = 158), or haloperidol (n = 97). Psychosocial functioning was assessed with the Heinrichs-Carpenter Quality of Life Scale [QLS], cognition with a standard battery of neurocognitive tests; and psychiatric symptoms with the Positive and Negative Syndrome Scale [PANSS]. A path-analytic approach was used to evaluate the effects of changes in cognitive functioning on subdomains of quality of life, and to determine whether such effects were direct or mediated via changes in psychiatric symptoms.</p> <p>Results</p> <p>At baseline, processing speed affected functioning mainly indirectly via negative symptoms. Positive symptoms also affected functioning at baseline although independent of cognition. At 24 weeks, changes in processing speed affected changes in functioning both directly and indirectly via PANSS negative subscale scores. Positive symptoms no longer contributed to the path-analytic models. Although a consistent relationship was observed between processing speed and the 3 functional domains, variation existed as to whether the paths were direct and/or indirect. Working memory and verbal memory did not significantly contribute to any of the path-analytic models studied.</p> <p>Conclusion</p> <p>Processing speed demonstrated direct and indirect effects via negative symptoms on three domains of functioning as measured by the QLS at baseline and following 24 weeks of antipsychotic treatment.</p

    An efficient approach to BAC based assembly of complex genomes

    Get PDF
    Background: There has been an exponential growth in the number of genome sequencing projects since the introduction of next generation DNA sequencing technologies. Genome projects have increasingly involved assembly of whole genome data which produces inferior assemblies compared to traditional Sanger sequencing of genomic fragments cloned into bacterial artificial chromosomes (BACs). While whole genome shotgun sequencing using next generation sequencing (NGS) is relatively fast and inexpensive, this method is extremely challenging for highly complex genomes, where polyploidy or high repeat content confounds accurate assembly, or where a highly accurate ‘gold’ reference is required. Several attempts have been made to improve genome sequencing approaches by incorporating NGS methods, to variable success. Results: We present the application of a novel BAC sequencing approach which combines indexed pools of BACs, Illumina paired read sequencing, a sequence assembler specifically designed for complex BAC assembly, and a custom bioinformatics pipeline. We demonstrate this method by sequencing and assembling BAC cloned fragments from bread wheat and sugarcane genomes. Conclusions: We demonstrate that our assembly approach is accurate, robust, cost effective and scalable, with applications for complete genome sequencing in large and complex genomes

    Comparing De Novo Genome Assembly: The Long and Short of It

    Get PDF
    Recent advances in DNA sequencing technology and their focal role in Genome Wide Association Studies (GWAS) have rekindled a growing interest in the whole-genome sequence assembly (WGSA) problem, thereby, inundating the field with a plethora of new formalizations, algorithms, heuristics and implementations. And yet, scant attention has been paid to comparative assessments of these assemblers' quality and accuracy. No commonly accepted and standardized method for comparison exists yet. Even worse, widely used metrics to compare the assembled sequences emphasize only size, poorly capturing the contig quality and accuracy. This paper addresses these concerns: it highlights common anomalies in assembly accuracy through a rigorous study of several assemblers, compared under both standard metrics (N50, coverage, contig sizes, etc.) as well as a more comprehensive metric (Feature-Response Curves, FRC) that is introduced here; FRC transparently captures the trade-offs between contigs' quality against their sizes. For this purpose, most of the publicly available major sequence assemblers – both for low-coverage long (Sanger) and high-coverage short (Illumina) reads technologies – are compared. These assemblers are applied to microbial (Escherichia coli, Brucella, Wolbachia, Staphylococcus, Helicobacter) and partial human genome sequences (Chr. Y), using sequence reads of various read-lengths, coverages, accuracies, and with and without mate-pairs. It is hoped that, based on these evaluations, computational biologists will identify innovative sequence assembly paradigms, bioinformaticists will determine promising approaches for developing “next-generation” assemblers, and biotechnologists will formulate more meaningful design desiderata for sequencing technology platforms. A new software tool for computing the FRC metric has been developed and is available through the AMOS open-source consortium
    corecore