77 research outputs found

    Identification and molecular analysis of mercury resistant bacteria in Kor River, Iran

    Get PDF
    Mercury (Hg) is one of the most important toxic pollutants widespread in the environment. It is being extensively used in industrial applications (chlor-alkali electrolysis, fungicides, disinfectants, dental products, etc), resulting in local hot spots of pollution and serious effects on biota and humans. The aim of this study was to identify mercury resistant bacteria and extract their plasmids and DNA. In this study, mercury-resistant bacteria were isolated and characterized from mercury-polluted sediments in Kor River in Iran. The samples were cultured in different media cultures, identified using biochemical tests, and due to the relationship between antibiotic and mercury resistance, they were isolated based on these two factors. The plasmids and DNA were extracted from the most resistant bacteria to both antibiotic and mercury and the sizes were determined using agarose gel electrophoresis. A 12.3 Kb plasmid from Serattia sp. and Escherichia coli and using Sau3A1 enzyme, some DNA fragments (4, 6, 8 and 10 Kb) from Pseudomonas sp., Serattia sp. and Escherichia coli were also extracted.Key words: Mercury, resistant, bacteria, DNA, plasmid extraction, restriction endonuclease

    Metal-Organic Framework-Enhanced ELISA Platform for Ultrasensitive Detection of PD-L1

    Full text link
    © 2020 American Chemical Society. The programmed cell death ligand 1 (PD-L1) protein has emerged as a predictive cancer biomarker and sensitivity to immune checkpoint blockade-based cancer immunotherapies. Current technologies for the detection of protein-based biomarkers, including the enzyme-linked immunosorbent assay (ELISA), have limitations such as low sensitivity and limit of detection (LOD) in addition to degradation of antibodies in exposure to environmental changes such as temperature and pH. To address these issues, we have proposed a metal-organic framework (MOF)-based ELISA for the detection of the PD-L1. A protective coating based on Zeolitic Imidazolate Framework 8 (ZIF-8) MOF thin film and polydopamine-polyethylenimine (PDA-PEI) was introduced on an ELISA plate for the improvement of antibody immobilization. Sensitivity and LOD of the resulting platform were compared with a conventional ELISA kit, and the bioactivity of the antibody in the proposed immunoassay was investigated in response to various pH and temperature values. The LOD and sensitivity of the MOF-based PD-L1 ELISA were 225 and 15.12 times higher, respectively, compared with those of the commercial ELISA kit. The antibody@ZIF-8/PDA-PEI was stable up to 55 °C and the pH range 5-10. The proposed platform can provide sensitive detection for target proteins, in addition to being resistant to elevated temperature and pH. The proposed MOF-based ELISA has significant potential for the clinical and diagnostic studies

    Silicon Atomic Quantum Dots Enable Beyond-CMOS Electronics

    Full text link
    We review our recent efforts in building atom-scale quantum-dot cellular automata circuits on a silicon surface. Our building block consists of silicon dangling bond on a H-Si(001) surface, which has been shown to act as a quantum dot. First the fabrication, experimental imaging, and charging character of the dangling bond are discussed. We then show how precise assemblies of such dots can be created to form artificial molecules. Such complex structures can be used as systems with custom optical properties, circuit elements for quantum-dot cellular automata, and quantum computing. Considerations on macro-to-atom connections are discussed.Comment: 28 pages, 19 figure

    Group B streptococcus serotype prevalence in reproductive-age women at a tertiary care military medical center relative to global serotype distribution

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Group B <it>Streptococcus </it>(GBS) serotype (Ia, Ib, II-IX) correlates with pathogen virulence and clinical prognosis. Epidemiological studies of seroprevalence are an important metric for determining the proportion of serotypes in a given population. The purpose of this study was to evaluate the prevalence of individual GBS serotypes at Madigan Healthcare System (Madigan), the largest military tertiary healthcare facility in the Pacific Northwestern United States, and to compare seroprevalences with international locations.</p> <p>Methods</p> <p>To determine serotype distribution at Madigan, we obtained GBS isolates from standard-of-care anogenital swabs from 207 women of indeterminate gravidity between ages 18-40 during a five month interval. Serotype was determined using a recently described molecular method of polymerase chain reaction by capsular polysaccharide synthesis (cps) genes associated with pathogen virulence.</p> <p>Results</p> <p>Serotypes Ia, III, and V were the most prevalent (28%, 27%, and 17%, respectively). A systematic review of global GBS seroprevalence, meta-analysis, and statistical comparison revealed strikingly similar serodistibution at Madigan relative to civilian-sector populations in Canada and the United States. Serotype Ia was the only serotype consistently higher in North American populations relative to other geographic regions (p < 0.005). The number of non-typeable isolates was significantly lower in the study (p < 0.005).</p> <p>Conclusion</p> <p>This study establishes PCR-based serotyping as a viable strategy for GBS epidemiological surveillance. Our results suggest that GBS seroprevalence remains stable in North America over the past two decades.</p

    4-Hydroxyisophthalic acid from Decalepis hamiltonii rescues the neurobehavioral deficit in transgenic Drosophila model of taupathies

    No full text
    Oxidative stress is one of the major etiological factors implicated in pathogenesis of neurodegenerative diseases. Since neurons are more sensitive to oxidative damage there is an increasing interest in developing novel antioxidant therapies, especially herbal preparations due to their safety profile and high efficiency. In this regard, the neuroprotective potential of a novel antioxidant compound, 4-hydroxyisophthalic acid (4-HIPA) isolated from aqueous extract of Decalepis hamiltonii roots was examined using transgenic Drosophila model of taupathy expressing wild-type and mutant forms of 2N4R isoform of human microtubule associated protein tau (MAPT). Taupathy model flies showed cognitive deficits in olfactory memory and deteriorated circadian rhythm of locomotory activities. Administration of 0.1 mg/ml 4-HIPA, markedly enhanced their olfactory memory performance and restored circadian rhythmicity of the transgenic flies locomotory behavior to the normal range. The mechanism of action that underlies 4-HIPA neuroprotection involves enhancement in efficiency of cellular antioxidant defense system by means of elevation in antioxidant enzyme activities and attenuation of oxidative stress. The molecule could positively affect the activity of neurotransmitter enzymes, which in turn enhances neuronal function and ameliorates the Tau-induced neurobehavioral deficits. Our findings showed that 4-HIPA can be considered as a suitable therapeutic candidate for drug development towards treatment of neurodegenerative disorders. (C) 2016 Elsevier Ltd. All rights reserved
    corecore