23 research outputs found

    The Herpes Simplex Virus-1 Transactivator Infected Cell Protein-4 Drives VEGF-A Dependent Neovascularization

    Get PDF
    Herpes simplex virus-1 (HSV-1) causes lifelong infection affecting between 50 and 90% of the global population. In addition to causing dermal lesions, HSV-1 is a leading cause of blindness resulting from recurrent corneal infection. Corneal disease is characterized by loss of corneal immunologic privilege and extensive neovascularization driven by vascular endothelial growth factor-A (VEGF-A). In the current study, we identify HSV-1 infected cells as the dominant source of VEGF-A during acute infection, and VEGF-A transcription did not require TLR signaling or MAP kinase activation. Rather than being an innate response to the pathogen, VEGF-A transcription was directly activated by the HSV-1 encoded immediate early transcription factor, ICP4. ICP4 bound the proximal human VEGF-A promoter and was sufficient to promote transcription. Transcriptional activation also required cis GC-box elements common to the VEGF-A promoter and HSV-1 early genes. Our results suggest that the neovascularization characteristic of ocular HSV-1 disease is a direct result of HSV-1's major transcriptional regulator, ICP4, and similarities between the VEGF-A promoter and those of HSV-1 early genes

    Human cytomegalovirus immediate-early 1 protein rewires upstream STAT3 to downstream STAT1 signaling switching an IL6-type to an IFNγ-like response

    Get PDF
    MN and CP were supported by the Wellcome Trust (www.wellcome.ac.uk) Institutional Strategic Support Fund and CP was supported by the Deutsche Forschungsgemeinschaft (PA 815/2-1; www.dfg.de).The human cytomegalovirus (hCMV) major immediate-early 1 protein (IE1) is best known for activating transcription to facilitate viral replication. Here we present transcriptome data indicating that IE1 is as significant a repressor as it is an activator of host gene expression. Human cells induced to express IE1 exhibit global repression of IL6- and oncostatin M-responsive STAT3 target genes. This repression is followed by STAT1 phosphorylation and activation of STAT1 target genes normally induced by IFNγ. The observed repression and subsequent activation are both mediated through the same region (amino acids 410 to 445) in the C-terminal domain of IE1, and this region serves as a binding site for STAT3. Depletion of STAT3 phenocopies the STAT1-dependent IFNγ-like response to IE1. In contrast, depletion of the IL6 receptor (IL6ST) or the STAT kinase JAK1 prevents this response. Accordingly, treatment with IL6 leads to prolonged STAT1 instead of STAT3 activation in wild-type IE1 expressing cells, but not in cells expressing a mutant protein (IE1dl410-420) deficient for STAT3 binding. A very similar STAT1-directed response to IL6 is also present in cells infected with a wild-type or revertant hCMV, but not an IE1dl410-420 mutant virus, and this response results in restricted viral replication. We conclude that IE1 is sufficient and necessary to rewire upstream IL6-type to downstream IFNγ-like signaling, two pathways linked to opposing actions, resulting in repressed STAT3- and activated STAT1-responsive genes. These findings relate transcriptional repressor and activator functions of IE1 and suggest unexpected outcomes relevant to viral pathogenesis in response to cytokines or growth factors that signal through the IL6ST-JAK1-STAT3 axis in hCMV-infected cells. Our results also reveal that IE1, a protein considered to be a key activator of the hCMV productive cycle, has an unanticipated role in tempering viral replication.Publisher PDFPeer reviewe

    Serial MRI imaging reveals minimal impact of ketogenic diet on established liver tumor growth

    Full text link
    Rodent models of liver tumorigenesis have reproducibly shown that dietary sugar intake is a powerful driver of liver tumor initiation and growth. In contrast, dietary sugar restriction with ketogenic diets or calorie restriction generally prevents liver tumor formation. Ketogenic diet is viewed positively as a therapeutic adjuvant; however, most ketogenic diet studies described to date have been performed in prevention mode rather than treatment mode. Therefore, it remains unclear whether a ketogenic diet can be administered in late stages of disease to stall or reverse liver tumor growth. To model the clinically relevant treatment mode, we administered a ketogenic diet to mice after liver tumor initiation and monitored tumor growth by magnetic resonance imaging (MRI). Male C57BL/6 mice were injected with diethylnitrosamine (DEN) at 2 weeks of age and fed a chow diet until 39 weeks of age, when they underwent MRI imaging to detect liver tumors. Mice were then randomised into two groups and fed either a chow diet or switched to a ketogenic diet from 40–48 weeks of age. Serial MRIs were performed at 44 and 48 weeks of age. All mice had tumors at study completion and there were no differences in total tumor burden between diet groups. Although a ketogenic diet has marked protective effects against DEN-induced liver tumourigenesis in this mouse model, these data demonstrate that ketogenic diet cannot stop the progression of established liver tumors

    Dietary sugar intake increases liver tumor incidence in female mice

    Full text link
    Overnutrition can promote liver cancer in mice and humans that have liver damage caused by alcohol, viruses, or carcinogens. However, the mechanism linking diet to increased liver tumorigenesis remains unclear in the context of whether tumorigenesis is secondary to obesity, or whether nutrients like sugar or fat drive tumorigenesis independent of obesity. In male mice, liver tumor burden was recently found to correlate with sugar intake, independent of dietary fat intake and obesity. However, females are less susceptible to developing liver cancer than males, and it remains unclear how nutrition affects tumorigenesis in females. Herein, female mice were exposed to the liver carcinogen diethylnitrosamine (DEN) and fed diets with well-defined sugar and fat content. Mice fed diets with high sugar content had the greatest liver tumor incidence while dietary fat intake was not associated with tumorigenesis. Diet-induced postprandial hyperglycemia and fasting hyperinsulinemia significantly correlated with tumor incidence, while tumor incidence was not associated with obesity and obesity-related disorders including liver steatosis, glucose intolerance, or elevated serum levels of estrogen, ALT, and lipids. These results simplify the pathophysiology of diet-induced liver tumorigenesis by focusing attention on the role of sugar metabolism and reducing emphasis on the complex milieu associated with obesity

    Lysophosphatidic acid counteracts glucagon-induced hepatocyte glucose production via STAT3

    Full text link
    Hepatic glucose production (HGP) is required to maintain normoglycemia during fasting. Glucagon is the primary hormone responsible for increasing HGP; however, there are many additional hormone and metabolic factors that influence glucagon sensitivity. In this study we report that the bioactive lipid lysophosphatidic acid (LPA) regulates hepatocyte glucose production by antagonizing glucagoninduced expression of the gluconeogenic enzyme phosphoenolpyruvate carboxykinase (PEPCK). Treatment of primary hepatocytes with exogenous LPA blunted glucagon-induced PEPCK expression and glucose production. Similarly, knockout mice lacking the LPA-degrading enzyme phospholipid phosphate phosphatase type 1 (PLPP1) had a 2-fold increase in endogenous LPA levels, reduced PEPCK levels during fasting, and decreased hepatic gluconeogenesis in response to a pyruvate challenge. Mechanistically, LPA antagonized glucagon-mediated inhibition of STAT3, a transcriptional repressor of PEPCK. Importantly, LPA did not blunt glucagon-stimulated glucose production or PEPCK expression in hepatocytes lacking STAT3. These data identify a novel role for PLPP1 activity and hepatocyte LPA levels in glucagon sensitivity via a mechanism involving STAT3

    Inhibition of hepatic lipogenesis enhances liver tumorigenesis by increasing antioxidant defence and promoting cell survival

    Full text link
    The metabolic pathway of de novo lipogenesis is frequently upregulated in human liver tumours, and its upregulation is associated with poor prognosis. Blocking lipogenesis in cultured liver cancer cells is sufficient to decrease cell viability; however, it is not known whether blocking lipogenesis in vivo can prevent liver tumorigenesis. Herein, we inhibit hepatic lipogenesis in mice by liver-specific knockout of acetyl-CoA carboxylase (ACC) genes and treat the mice with the hepatocellular carcinogen diethylnitrosamine (DEN). Unexpectedly, mice lacking hepatic lipogenesis have a twofold increase in tumour incidence and multiplicity compared to controls. Metabolomics analysis of ACC-deficient liver identifies a marked increase in antioxidants including NADPH and reduced glutathione. Importantly, supplementing primary wild-type hepatocytes with glutathione precursors improves cell survival following DEN treatment to a level indistinguishable from ACC-deficient primary hepatocytes. This study shows that lipogenesis is dispensable for liver tumorigenesis in mice treated with DEN, and identifies an important role for ACC enzymes in redox regulation and cell survival

    Mitochondrial uncoupler SHC517 reverses obesity in mice without affecting food intake.

    Full text link
    AimsMitochondrial uncouplers decrease caloric efficiency and have potential therapeutic benefits for the treatment of obesity and related metabolic disorders. Herein we investigate the metabolic and physiologic effects of a recently identified small molecule mitochondrial uncoupler named SHC517 in a mouse model of diet-induced obesity.MethodsSHC517 was administered as an admixture in food. The effect of SHC517 on in vivo energy expenditure and respiratory quotient was determined by indirect calorimetry. A dose-finding obesity prevention study was performed by starting SHC517 treatment concomitant with high fat diet for a period of 12 days. An obesity reversal study was performed by feeding mice western diet for 4 weeks prior to SHC517 treatment for 7 weeks. Biochemical assays were used to determine changes in glucose, insulin, triglycerides, and cholesterol. SHC517 concentrations were determined by mass spectrometry.ResultsSHC517 increased lipid oxidation without affecting body temperature. SHC517 prevented diet-induced obesity when administered at 0.05% and 0.1% w/w in high fat diet and reversed established obesity when tested at the 0.05% dose. In the obesity reversal model, SHC517 restored adiposity to levels similar to chow-fed control mice without affecting food intake or lean body mass. SHC517 improved glucose tolerance and fasting glucose levels when administered in both the obesity prevention and obesity reversal modes.ConclusionsSHC517 is a mitochondrial uncoupler with potent anti-obesity and insulin sensitizing effects in mice. SHC517 reversed obesity without altering food intake or compromising lean mass, effects that are highly sought-after in anti-obesity therapeutics
    corecore