175 research outputs found

    Novel AroA from Pseudomonas putida Confers Tobacco Plant with High Tolerance to Glyphosate

    Get PDF
    Glyphosate is a non-selective broad-spectrum herbicide that inhibits 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS, also designated as AroA), a key enzyme in the aromatic amino acid biosynthesis pathway in microorganisms and plants. Previously, we reported that a novel AroA (PpAroA1) from Pseudomonas putida had high tolerance to glyphosate, with little homology to class I or class II glyphosate-tolerant AroA. In this study, the coding sequence of PpAroA1 was optimized for tobacco. For maturation of the enzyme in chloroplast, a chloroplast transit peptide coding sequence was fused in frame with the optimized aroA gene (PparoA1optimized) at the 5′ end. The PparoA1optimized gene was introduced into the tobacco (Nicotiana tabacum L. cv. W38) genome via Agrobacterium-mediated transformation. The transformed explants were first screened in shoot induction medium containing kanamycin. Then glyphosate tolerance was assayed in putative transgenic plants and its T1 progeny. Our results show that the PpAroA1 from Pseudomonas putida can efficiently confer tobacco plants with high glyphosate tolerance. Transgenic tobacco overexpressing the PparoA1optimized gene exhibit high tolerance to glyphosate, which suggest that the novel PpAroA1 is a new and good candidate applied in transgenic crops with glyphosate tolerance in future

    HAAD: A Quick Algorithm for Accurate Prediction of Hydrogen Atoms in Protein Structures

    Get PDF
    Hydrogen constitutes nearly half of all atoms in proteins and their positions are essential for analyzing hydrogen-bonding interactions and refining atomic-level structures. However, most protein structures determined by experiments or computer prediction lack hydrogen coordinates. We present a new algorithm, HAAD, to predict the positions of hydrogen atoms based on the positions of heavy atoms. The algorithm is built on the basic rules of orbital hybridization followed by the optimization of steric repulsion and electrostatic interactions. We tested the algorithm using three independent data sets: ultra-high-resolution X-ray structures, structures determined by neutron diffraction, and NOE proton-proton distances. Compared with the widely used programs CHARMM and REDUCE, HAAD has a significantly higher accuracy, with the average RMSD of the predicted hydrogen atoms to the X-ray and neutron diffraction structures decreased by 26% and 11%, respectively. Furthermore, hydrogen atoms placed by HAAD have more matches with the NOE restraints and fewer clashes with heavy atoms. The average CPU cost by HAAD is 18 and 8 times lower than that of CHARMM and REDUCE, respectively. The significant advantage of HAAD in both the accuracy and the speed of the hydrogen additions should make HAAD a useful tool for the detailed study of protein structure and function. Both an executable and the source code of HAAD are freely available at http://zhang.bioinformatics.ku.edu/HAAD

    The impact of submaximal exercise during heat and/or hypoxia on the cardiovascular and monocyte HSP72 responses to subsequent (post 24 h) exercise in hypoxia

    Get PDF
    BACKGROUND: The aims of this study were to describe the cellular stress response to prolonged endurance exercise in acute heat, hypoxia and the combination of heat and hypoxia and to determine whether prior acute exposure to these stressors improved cellular tolerance to a subsequent exercise bout in hypoxia 24 h later. METHODS: Twelve males (age 22 ± 4 years, height 1.77 ± 0.05 m, mass 79 ± 12.9 kg, VO(2) max 3.57 ± 0.7 L · min(-1)) completed four trials (30-min rest, 90-min cycling at 50% normoxic VO(2) max) in normothermic normoxia (NORM; 18°C, F(I)O(2) = 0.21), heat (HEAT; 40°C, 20% RH), hypoxia (HYP; F(I)O(2) = 0.14) or a combination of heat and hypoxia (COM; 40°C, 20% RH, F(I)O(2) = 0.14) separated by at least 7 days. Twenty-four hours after each trial, participants completed a hypoxic stress test (HST; 15-min rest, 60-min cycling at 50% normoxic VO(2) max, F(I)O(2) = 0.14). Monocyte heat shock protein 72 (mHSP72) was assessed immediately before and after each exercise bout. RESULTS: mHSP72 increased post exercise in NORM (107% ± 5.5%, p > 0.05), HYP (126% ± 16%, p < 0.01), HEAT (153% ± 14%, p < 0.01) and COM (161% ± 32%, p < 0.01). mHSP72 had returned to near-resting values 24 h after NORM (97% ± 8.6%) but was elevated after HEAT (130% ± 19%), HYP (118% ± 17%) and COM (131% ± 19%) (p < 0.05). mHSP72 increased from baseline after HST(NORM) (118% ± 12%, p < 0.05), but did not increase further in HST(HEAT), HST(HYP) and HST(COM). CONCLUSIONS: The prior induction of mHSP72 as a result of COM, HEAT and HYP attenuated further mHSP72 induction after HST and was indicative of conferred cellular tolerance

    Combined Analysis of Murine and Human Microarrays and ChIP Analysis Reveals Genes Associated with the Ability of MYC To Maintain Tumorigenesis

    Get PDF
    The MYC oncogene has been implicated in the regulation of up to thousands of genes involved in many cellular programs including proliferation, growth, differentiation, self-renewal, and apoptosis. MYC is thought to induce cancer through an exaggerated effect on these physiologic programs. Which of these genes are responsible for the ability of MYC to initiate and/or maintain tumorigenesis is not clear. Previously, we have shown that upon brief MYC inactivation, some tumors undergo sustained regression. Here we demonstrate that upon MYC inactivation there are global permanent changes in gene expression detected by microarray analysis. By applying StepMiner analysis, we identified genes whose expression most strongly correlated with the ability of MYC to induce a neoplastic state. Notably, genes were identified that exhibited permanent changes in mRNA expression upon MYC inactivation. Importantly, permanent changes in gene expression could be shown by chromatin immunoprecipitation (ChIP) to be associated with permanent changes in the ability of MYC to bind to the promoter regions. Our list of candidate genes associated with tumor maintenance was further refined by comparing our analysis with other published results to generate a gene signature associated with MYC-induced tumorigenesis in mice. To validate the role of gene signatures associated with MYC in human tumorigenesis, we examined the expression of human homologs in 273 published human lymphoma microarray datasets in Affymetrix U133A format. One large functional group of these genes included the ribosomal structural proteins. In addition, we identified a group of genes involved in a diverse array of cellular functions including: BZW2, H2AFY, SFRS3, NAP1L1, NOLA2, UBE2D2, CCNG1, LIFR, FABP3, and EDG1. Hence, through our analysis of gene expression in murine tumor models and human lymphomas, we have identified a novel gene signature correlated with the ability of MYC to maintain tumorigenesis

    Complex Deleterious Interactions Associated with Malic Enzyme May Contribute to Reproductive Isolation in the Copepod Tigriopus californicus

    Get PDF
    Dobzhansky-Muller incompatibilities can result from the interactions of more than a single pair of interacting genes and there are several different models of how such complex interactions can be structured. Previous empirical work has identified complex conspecific epistasis as a form of complex interaction that has contributed to postzygotic reproductive isolation between taxa, but other forms of complexity are also possible. Here, I probe the genetic basis of reproductive isolation in crosses of the intertidal copepod Tigriopus californicus by looking at the impact of markers in genes encoding metabolic enzymes in F2 hybrids. The region of the genome associated with the locus ME2 is shown to have strong, repeatable impacts on the fitness of hybrids in crosses and epistatic interactions with another chromosomal region marked by the GOT2 locus in one set of crosses. In a cross between one of these populations and a third population, these two regions do not appear to interact despite the continuation of a large effect of the ME2 region itself in both crosses. The combined results suggest that the ME2 chromosomal region is involved in incompatibilities with several unique partners. If these deleterious interactions all stem from the same factor in this region, that would suggest a different form of complexity from complex conspecific epistasis, namely, multiple independent deleterious interactions stemming from the same factor. Confirmation of this idea will require more fine-scale mapping of the interactions of the ME2 region of the genome

    Computational Fragment-Based Binding Site Identification by Ligand Competitive Saturation

    Get PDF
    Fragment-based drug discovery using NMR and x-ray crystallographic methods has proven utility but also non-trivial time, materials, and labor costs. Current computational fragment-based approaches circumvent these issues but suffer from limited representations of protein flexibility and solvation effects, leading to difficulties with rigorous ranking of fragment affinities. To overcome these limitations we describe an explicit solvent all-atom molecular dynamics methodology (SILCS: Site Identification by Ligand Competitive Saturation) that uses small aliphatic and aromatic molecules plus water molecules to map the affinity pattern of a protein for hydrophobic groups, aromatic groups, hydrogen bond donors, and hydrogen bond acceptors. By simultaneously incorporating ligands representative of all these functionalities, the method is an in silico free energy-based competition assay that generates three-dimensional probability maps of fragment binding (FragMaps) indicating favorable fragment∶protein interactions. Applied to the two-fold symmetric oncoprotein BCL-6, the SILCS method yields two-fold symmetric FragMaps that recapitulate the crystallographic binding modes of the SMRT and BCOR peptides. These FragMaps account both for important sequence and structure differences in the C-terminal halves of the two peptides and also the high mobility of the BCL-6 His116 sidechain in the peptide-binding groove. Such SILCS FragMaps can be used to qualitatively inform the design of small-molecule inhibitors or as scoring grids for high-throughput in silico docking that incorporate both an atomic-level description of solvation and protein flexibility

    Solution Structure and Dynamics of the I214V Mutant of the Rabbit Prion Protein

    Get PDF
    Background: The conformational conversion of the host-derived cellular prion protein (PrP C) into the disease-associated scrapie isoform (PrP Sc) is responsible for the pathogenesis of transmissible spongiform encephalopathies (TSEs). Various single-point mutations in PrP C s could cause structural changes and thereby distinctly influence the conformational conversion. Elucidation of the differences between the wild-type rabbit PrP C (RaPrP C) and various mutants would be of great help to understand the ability of RaPrP C to be resistant to TSE agents. Methodology/Principal Findings: We determined the solution structure of the I214V mutant of RaPrP C (91–228) and detected the backbone dynamics of its structured C-terminal domain (121–228). The I214V mutant displays a visible shift of surface charge distribution that may have a potential effect on the binding specificity and affinity with other chaperones. The number of hydrogen bonds declines dramatically. Urea-induced transition experiments reveal an obvious decrease in the conformational stability. Furthermore, the NMR dynamics analysis discloses a significant increase in the backbone flexibility on the pico- to nanosecond time scale, indicative of lower energy barrier for structural rearrangement. Conclusions/Significance: Our results suggest that both the surface charge distribution and the intrinsic backbone flexibility greatly contribute to species barriers for the transmission of TSEs, and thereby provide valuable hints fo

    Unraveling infectious structures, strain variants and species barriers for the yeast prion [PSI+]

    Get PDF
    Prions are proteins that can access multiple conformations, at least one of which is beta-sheet rich, infectious and self-perpetuating in nature. These infectious proteins show several remarkable biological activities, including the ability to form multiple infectious prion conformations, also known as strains or variants, encoding unique biological phenotypes, and to establish and overcome prion species (transmission) barriers. In this Perspective, we highlight recent studies of the yeast prion [PSI+], using various biochemical and structural methods, that have begun to illuminate the molecular mechanisms by which self-perpetuating prions encipher such biological activities. We also discuss several aspects of prion conformational change and structure that remain either unknown or controversial, and we propose approaches to accelerate the understanding of these enigmatic, infectious conformers

    Hydrophilic interaction liquid chromatography (HILIC)—a powerful separation technique

    Get PDF
    Hydrophilic interaction liquid chromatography (HILIC) provides an alternative approach to effectively separate small polar compounds on polar stationary phases. The purpose of this work was to review the options for the characterization of HILIC stationary phases and their applications for separations of polar compounds in complex matrices. The characteristics of the hydrophilic stationary phase may affect and in some cases limit the choices of mobile phase composition, ion strength or buffer pH value available, since mechanisms other than hydrophilic partitioning could potentially occur. Enhancing our understanding of retention behavior in HILIC increases the scope of possible applications of liquid chromatography. One interesting option may also be to use HILIC in orthogonal and/or two-dimensional separations. Bioapplications of HILIC systems are also presented
    corecore