216 research outputs found

    Serologic response to culture filtrate antigens of Mycobacterium ulcerans during Buruli ulcer disease.

    Get PDF
    Buruli ulcer (BU) is an emerging necrotic skin disease caused by Mycobacterium ulcerans. To assess the potential for a serodiagnostic test, we measured the humoral immune response of BU patients to M. ulcerans antigens and compared this response with delayed-type hypersensitivity responses to both Burulin and PPD. The delayed-type hypersensitivity response generally supported the diagnosis of BU, with overall reactivity to Burulin in 28 (71.8%) of 39 patients tested, compared with 3 (14%) of 21 healthy controls. However, this positive skin test response was observed primarily in patients with healed or active disease, and rarely in patients with early disease (p=0.009). When tested for a serologic response to M. ulcerans culture filtrate, 43 (70.5%) of 61 BU patients had antibodies to these antigens, compared with 10 (37.0%) of 27 controls and 4 (30. 8%) of 13 tuberculosis patients. There was no correlation between disease stage and the onset of this serum antibody response. Our findings suggest that serologic testing may be useful in the diagnosis and surveillance of BU

    Rapid Progressing Allele HLA-B35 Px Restricted Anti-HIV-1 CD8+ T Cells Recognize Vestigial CTL Epitopes

    Get PDF
    BACKGROUND: The HLA-B*35-Px allele has been associated with rapid disease progression in HIV-1 infection, in contrast to the HLA-B*35-Py allele. METHODOLOGY/PRINCIPAL FINDINGS: Immune responses to two HLA-B*35 restricted HIV-1 specific CTL epitopes and their variants were followed longitudinally during early HIV-1 infection in 16 HLA-B*35+ individuals. Subjects expressing HLA-B*35-Px alleles showed no difference in response to the consensus epitopes compared to individuals with HLA-B*35-Py alleles. Surprisingly, all the HLA-B*35-Px+ individuals responded to epitope-variants even in the absence of a consensus response. Sequencing of the viral population revealed no evidence of variant virus in any of the individuals. CONCLUSIONS/SIGNIFICANCE: This demonstrates a novel phenomenon that distinguishes individuals with the HLA-B*35-Px rapid progressing allele and those with the HLA-B*35-Py slower progressing allele

    T Cell Responses to Human Endogenous Retroviruses in HIV-1 Infection

    Get PDF
    Human endogenous retroviruses (HERVs) are remnants of ancient infectious agents that have integrated into the human genome. Under normal circumstances, HERVs are functionally defective or controlled by host factors. In HIV-1-infected individuals, intracellular defense mechanisms are compromised. We hypothesized that HIV-1 infection would remove or alter controls on HERV activity. Expression of HERV could potentially stimulate a T cell response to HERV antigens, and in regions of HIV-1/HERV similarity, these T cells could be cross-reactive. We determined that the levels of HERV production in HIV-1-positive individuals exceed those of HIV-1-negative controls. To investigate the impact of HERV activity on specific immunity, we examined T cell responses to HERV peptides in 29 HIV-1-positive and 13 HIV-1-negative study participants. We report T cell responses to peptides derived from regions of HERV detected by ELISPOT analysis in the HIV-1-positive study participants. We show an inverse correlation between anti-HERV T cell responses and HIV-1 plasma viral load. In HIV-1-positive individuals, we demonstrate that HERV-specific T cells are capable of killing cells presenting their cognate peptide. These data indicate that HIV-1 infection leads to HERV expression and stimulation of a HERV-specific CD8+ T cell response. HERV-specific CD8+ T cells have characteristics consistent with an important role in the response to HIV-1 infection: a phenotype similar to that of T cells responding to an effectively controlled virus (cytomegalovirus), an inverse correlation with HIV-1 plasma viral load, and the ability to lyse cells presenting their target peptide. These characteristics suggest that elicitation of anti-HERV-specific immune responses is a novel approach to immunotherapeutic vaccination. As endogenous retroviral sequences are fixed in the human genome, they provide a stable target, and HERV-specific T cells could recognize a cell infected by any HIV-1 viral variant. HERV-specific immunity is an important new avenue for investigation in HIV-1 pathogenesis and vaccine design

    Tim-3 expression defines a novel population of dysfunctional T cells with highly elevated frequencies in progressive HIV-1 infection

    Get PDF
    Progressive loss of T cell functionality is a hallmark of chronic infection with human immunodeficiency virus 1 (HIV-1). We have identified a novel population of dysfunctional T cells marked by surface expression of the glycoprotein Tim-3. The frequency of this population was increased in HIV-1–infected individuals to a mean of 49.4 Β± SD 12.9% of CD8+ T cells expressing Tim-3 in HIV-1–infected chronic progressors versus 28.5 Β± 6.8% in HIV-1–uninfected individuals. Levels of Tim-3 expression on T cells from HIV-1–infected inviduals correlated positively with HIV-1 viral load and CD38 expression and inversely with CD4+ T cell count. In progressive HIV-1 infection, Tim-3 expression was up-regulated on HIV-1–specific CD8+ T cells. Tim-3–expressing T cells failed to produce cytokine or proliferate in response to antigen and exhibited impaired Stat5, Erk1/2, and p38 signaling. Blocking the Tim-3 signaling pathway restored proliferation and enhanced cytokine production in HIV-1–specific T cells. Thus, Tim-3 represents a novel target for the therapeutic reversal of HIV-1–associated T cell dysfunction

    A perspective on the measurement of time in plant disease epidemiology

    Get PDF
    The growth and development of plant pathogens and their hosts generally respond strongly to the temperature of their environment. However, most studies of plant pathology record pathogen/host measurements against physical time (e.g. hours or days) rather than thermal time (e.g. degree-days or degree-hours). This confounds the comparison of epidemiological measurements across experiments and limits the value of the scientific literature

    Role of Visible Light-Activated Photocatalyst on the Reduction of Anthrax Spore-Induced Mortality in Mice

    Get PDF
    BACKGROUND: Photocatalysis of titanium dioxide (TiO(2)) substrates is primarily induced by ultraviolet light irradiation. Anion-doped TiO(2) substrates were shown to exhibit photocatalytic activities under visible-light illumination, relative environmentally-friendly materials. Their anti-spore activity against Bacillus anthracis, however, remains to be investigated. We evaluated these visible-light activated photocatalysts on the reduction of anthrax spore-induced pathogenesis. METHODOLOGY/PRINCIPAL FINDINGS: Standard plating method was used to determine the inactivation of anthrax spore by visible light-induced photocatalysis. Mouse models were further employed to investigate the suppressive effects of the photocatalysis on anthrax toxin- and spore-mediated mortality. We found that anti-spore activities of visible light illuminated nitrogen- or carbon-doped titania thin films significantly reduced viability of anthrax spores. Even though the spore-killing efficiency is only approximately 25%, our data indicate that spores from photocatalyzed groups but not untreated groups have a less survival rate after macrophage clearance. In addition, the photocatalysis could directly inactivate lethal toxin, the major virulence factor of B. anthracis. In agreement with these results, we found that the photocatalyzed spores have tenfold less potency to induce mortality in mice. These data suggest that the photocatalysis might injury the spores through inactivating spore components. CONCLUSION/SIGNIFICANCE: Photocatalysis induced injuries of the spores might be more important than direct killing of spores to reduce pathogenicity in the host

    Partner relationship satisfaction and maternal emotional distress in early pregnancy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recognition of maternal emotional distress during pregnancy and the identification of risk factors for this distress are of considerable clinical- and public health importance. The mental health of the mother is important both for herself, and for the physical and psychological health of her children and the welfare of the family. The first aim of the present study was to identify risk factors for maternal emotional distress during pregnancy with special focus on partner relationship satisfaction. The second aim was to assess interaction effects between relationship satisfaction and the main predictors.</p> <p>Methods</p> <p>Pregnant women enrolled in the Norwegian Mother and Child Cohort Study (n = 51,558) completed a questionnaire with questions about maternal emotional distress, relationship satisfaction, and other risk factors. Associations between 37 predictor variables and emotional distress were estimated by multiple linear regression analysis.</p> <p>Results</p> <p>Relationship dissatisfaction was the strongest predictor of maternal emotional distress (Ξ² = 0.25). Other predictors were dissatisfaction at work (Ξ² = 0.11), somatic disease (Ξ² = 0.11), work related stress (Ξ² = 0.10) and maternal alcohol problems in the preceding year (Ξ² = 0.09). Relationship satisfaction appeared to buffer the effects of frequent moving, somatic disease, maternal smoking, family income, irregular working hours, dissatisfaction at work, work stress, and mother's sick leave (<it>P </it>< 0.05).</p> <p>Conclusions</p> <p>Dissatisfaction with the partner relationship is a significant predictor of maternal emotional distress in pregnancy. A good partner relationship can have a protective effect against some stressors.</p

    Genome-Wide Identification of Calcium-Response Factor (CaRF) Binding Sites Predicts a Role in Regulation of Neuronal Signaling Pathways

    Get PDF
    Calcium-Response Factor (CaRF) was first identified as a transcription factor based on its affinity for a neuronal-selective calcium-response element (CaRE1) in the gene encoding Brain-Derived Neurotrophic Factor (BDNF). However, because CaRF shares no homology with other transcription factors, its properties and gene targets have remained unknown. Here we show that the DNA binding domain of CaRF has been highly conserved across evolution and that CaRF binds DNA directly in a sequence-specific manner in the absence of other eukaryotic cofactors. Using a binding site selection screen we identify a high-affinity consensus CaRF response element (cCaRE) that shares significant homology with the CaRE1 element of Bdnf. In a genome-wide chromatin immunoprecipitation analysis (ChIP-Seq), we identified 176 sites of CaRF-specific binding (peaks) in neuronal genomic DNA. 128 of these peaks are within 10kB of an annotated gene, and 60 are within 1kB of an annotated transcriptional start site. At least 138 of the CaRF peaks contain a common 10-bp motif with strong statistical similarity to the cCaRE, and we provide evidence predicting that CaRF can bind independently to at least 64.5% of these motifs in vitro. Analysis of this set of putative CaRF targets suggests the enrichment of genes that regulate intracellular signaling cascades. Finally we demonstrate that expression of a subset of these target genes is altered in the cortex of Carf knockout (KO) mice. Together these data strongly support the characterization of CaRF as a unique transcription factor and provide the first insight into the program of CaRF-regulated transcription in neurons

    Sequential Broadening of CTL Responses in Early HIV-1 Infection Is Associated with Viral Escape

    Get PDF
    BACKGROUND: Antigen-specific CTL responses are thought to play a central role in containment of HIV-1 infection, but no consistent correlation has been found between the magnitude and/or breadth of response and viral load changes during disease progression. METHODS AND FINDINGS: We undertook a detailed investigation of longitudinal CTL responses and HIV-1 evolution beginning with primary infection in 11 untreated HLA-A2 positive individuals. A subset of patients developed broad responses, which selected for consensus B epitope variants in Gag, Pol, and Nef, suggesting CTL-induced adaptation of HIV-1 at the population level. The patients who developed viral escape mutations and broad autologous CTL responses over time had a significantly higher increase in viral load during the first year of infection compared to those who did not develop viral escape mutations. CONCLUSIONS: A continuous dynamic development of CTL responses was associated with viral escape from temporarily effective immune responses. Our results suggest that broad CTL responses often represent footprints left by viral CTL escape rather than effective immune control, and help explain earlier findings that fail to show an association between breadth of CTL responses and viral load. Our results also demonstrate that CTL pressures help to maintain certain elements of consensus viral sequence, which likely represent viral escape from common HLA-restricted CTL responses. The ability of HIV to evolve to escape CTL responses restricted by a common HLA type highlights the challenges posed to development of an effective CTL-based vaccine
    • …
    corecore