7 research outputs found

    Glutamine starvation of monocytes inhibits the ubiquitin–proteasome proteolytic pathway

    Get PDF
    AbstractPeripheral blood monocytes utilize free glutamine (Gln) in addition to glucose as an important energy substrate. Although this demand increases upon activation, monocytes are commonly confronted with decreased plasma Gln during critical illness and thus suffer from Gln-starvation. Here we investigate the influence of Gln-starvation on protein stability and its effects on the monocyte proteome. Gln-starvation caused a reduction of protein degradation which was accompanied by an accumulation of ubiquitin–protein conjugates and a reduction of intracellular ATP. Similar effects were observed under ATP-reducing conditions and in the presence of a proteasome inhibitor. Using two-dimensional gel electrophoresis we identified the IL-1β precursor protein (pIL-1β) as the, by far, most induced protein in endotoxin-treated monocytes. The degradation of the short-lived pIL-1β was strongly reduced during Gln-starvation, while the degradation of the long-lived, constitutively expressed β-actin was less affected. This indicates that although Gln-starvation reduces protein breakdown on the overall proteasome level, it leads to differential changes in the stability of specific proteins. This selective effect is likely to contribute to the immunocompromised state of monocytes commonly observed during critical illness

    Coupling of a Major Allergen to the Surface of Immune Cells for Use in Prophylactic Cell Therapy for the Prevention of IgE-Mediated Allergy

    No full text
    Up to a third of the world’s population suffers from allergies, yet the effectiveness of available preventative measures remains, at large, poor. Consequently, the development of successful prophylactic strategies for the induction of tolerance against allergens is crucial. In proof-of-concept studies, our laboratory has previously shown that the transfer of autologous hematopoietic stem cells (HSC) or autologous B cells expressing a major grass pollen allergen, Phl p 5, induces robust tolerance in mice. However, eventual clinical translation would require safe allergen expression without the need for retroviral transduction. Therefore, we aimed to chemically couple Phl p 5 to the surface of leukocytes and tested their ability to induce tolerance. Phl p 5 was coupled by two separate techniques, either by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) or by linkage via a lipophilic anchor, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-poly(ethylene glycol)-maleimide (DSPE-PEG-Mal). The effectiveness was assessed in fresh and cultured Phl p 5-coupled cells by flow cytometry, image cytometry, and immunofluorescence microscopy. Chemical coupling of Phl p 5 using EDC was robust but was followed by rapid apoptosis. DSPE-PEG-Mal-mediated linkage was also strong, but antigen levels declined due to antigen internalization. Cells coupled with Phl p 5 by either method were transferred into autologous mice. While administration of EDC-coupled splenocytes together with short course immunosuppression initially reduced Phl p 5-specific antibody levels to a moderate degree, both methods did not induce sustained tolerance towards Phl p 5 upon several subcutaneous immunizations with the allergen. Overall, our results demonstrate the successful chemical linkage of an allergen to leukocytes using two separate techniques, eliminating the risks of genetic modifications. More durable surface expression still needs to be achieved for use in prophylactic cell therapy protocols

    8. Literaturverzeichnis

    No full text

    Anmerkungen

    No full text
    corecore