59 research outputs found

    State dependency of inhibitory control performance: an electrical neuroimaging study

    Get PDF
    Behavioral and brain responses to stimuli not only depend on their physical features but also on the individuals' neurocognitive states before stimuli onsets. While the influence of pre-stimulus fluctuations in brain activity on low-level perceptive processes is well established, the state dependency of high-order executive processes remains unclear. Using a classical inhibitory control Go/NoGo task, we examined whether and how fluctuations in the brain activity during the period preceding the stimuli triggering inhibition influenced inhibitory control performance. Seventeen participants completed the Go/NoGo task while 64-channel electroencephalogram was recorded. We compared the event-related potentials preceding the onset of the NoGo stimuli associated with inhibition failures false alarms (FA) vs. successful inhibition correct rejections (CR) with data-driven statistical analyses of global measures of the topography and strength of the scalp electric field. Distributed electrical source estimations were used to localize the origin of the event-related potentials modulations. We observed differences in the global field power of the event-related potentials (FA > CR) without concomitant topographic modulations over the 40 ms period immediately preceding NoGo stimuli. This result indicates that the same brain networks were engaged in the two conditions, but more strongly before FA than CR. Source estimations revealed that this effect followed from a higher activity before FA than CR within bilateral inferior frontal gyri and the right inferior parietal lobule. These findings suggest that uncontrolled quantitative variations in pre-stimulus activity within attentional and control brain networks influence inhibition performance. The present data thereby demonstrate the state dependency of cognitive processes of up to high- order executive levels

    Mental flexibility depends on a largely distributed white matter network: Causal evidence from connectome-based lesion-symptom mapping.

    Get PDF
    Mental flexibility (MF) refers to the capacity to dynamically switch from one task to another. Current neurocognitive models suggest that since this function requires interactions between multiple remote brain areas, the integrity of the anatomic tracts connecting these brain areas is necessary to maintain performance. We tested this hypothesis by assessing with a connectome-based lesion-symptom mapping approach the effects of white matter lesions on the brain's structural connectome and their association with performance on the trail making test, a neuropsychological test of MF, in a sample of 167 first unilateral stroke patients. We found associations between MF deficits and damage of i) left lateralized fronto-temporo-parietal connections and interhemispheric connections between left temporo-parietal and right parietal areas; ii) left cortico-basal connections; and iii) left cortico-pontine connections. We further identified a relationship between MF and white matter disconnections within cortical areas composing the cognitive control, default mode and attention functional networks. These results for a central role of white matter integrity in MF extend current literature by providing causal evidence for a functional interdependence among the regional cortical and subcortical structures composing the MF network. Our results further emphasize the necessity to consider connectomics in lesion-symptom mapping analyses to establish comprehensive neurocognitive models of high-order cognitive functions

    Hemispheric competence for auditory spatial representation

    Get PDF
    Sound localization relies on the analysis of interaural time and intensity differences, as well as attenuation patterns by the outer ear. We investigated the relative contributions of interaural time and intensity difference cues to sound localization by testing 60 healthy subjects: 25 with focal left and 25 with focal right hemispheric brain damage. Group and single-case behavioural analyses, as well as anatomo-clinical correlations, confirmed that deficits were more frequent and much more severe after right than left hemispheric lesions and for the processing of interaural time than intensity difference cues. For spatial processing based on interaural time difference cues, different error types were evident in the individual data. Deficits in discriminating between neighbouring positions occurred in both hemispaces after focal right hemispheric brain damage, but were restricted to the contralesional hemispace after focal left hemispheric brain damage. Alloacusis (perceptual shifts across the midline) occurred only after focal right hemispheric brain damage and was associated with minor or severe deficits in position discrimination. During spatial processing based on interaural intensity cues, deficits were less severe in the right hemispheric brain damage than left hemispheric brain damage group and no alloacusis occurred. These results, matched to anatomical data, suggest the existence of a binaural sound localization system predominantly based on interaural time difference cues and primarily supported by the right hemisphere. More generally, our data suggest that two distinct mechanisms contribute to: (i) the precise computation of spatial coordinates allowing spatial comparison within the contralateral hemispace for the left hemisphere and the whole space for the right hemisphere; and (ii) the building up of global auditory spatial representations in right temporo-parietal cortice

    Impairment of both languages in late bilinguals with dementia of the Alzheimer type

    Get PDF
    Neuropsychological theories raise the question if in late bilinguals with dementia of the Alzheimer type (DAT), the second language (L2) may be more impaired than the first (L1). We compared language performance in different tasks of oral comprehension (semantic and syntactic) and production (naming, repetition and fluency) in L1 and L2 in a group of 13 late proficient bilinguals wit DAT immersion, and a matched control group of 12 healthy late bilinguals. Two-way mixed repeated-measure ANOVAs with factors Language and Group revealed main effects of Group (p %lt; .05) indicating that DAT affects all aspects of language. There was no Group × Language interaction, suggesting that DAT affects both languages similarly. Our study thus shows that neurodegenerative diseases affect L1 and L2 in a parallel manner, particularly at the levels of semantic, lexical and syntactic processing. These results speak in favour of a shared L1 and L2 network in late bilinguals

    Spatiotemporal brain dynamics underlying attentional bias modifications

    Get PDF
    Exaggerated attentional biases toward specific elements of the environment contribute to the maintenance of several psychiatric conditions, such as biases to threatening faces in social anxiety. Although recent literature indicates that attentional bias modification may constitute an effective approach for psychiatric remediation, the underlying neurophysiological mechanisms remain unclear. We addressed this question by recording EEG in 24 healthy participants performing a modified dot-probe task in which pairs of neutral cues (colored shapes) were replaced by probe stimuli requiring a discrimination judgment. To induce an attentional bias toward or away from the cues, the probes were systematically presented either at the same or at the opposite position of a specific cue color. This paradigm enabled participants to spontaneously develop biases to initially unbiased, neutral cues, as measured by the response speed to the probe presented after the cues. Behavioral result indicated that the ABM procedure induced approach and avoidance biases. The influence of ABM on inhibitory control was assessed in a separated Go/NoGo task: changes in AB did not influence participants' capacity to inhibit their responses to the cues. Attentional bias modification was associated with a topographic modulation of event-related potentials already 50–84 ms following the onset of the cues. Statistical analyses of distributed electrical source estimations revealed that the development of attentional biases was associated with decreased activity in the left temporo-parieto-occipital junction. These findings suggest that attentional bias modification affects early sensory processing phases related to the extraction of information based on stimulus saliency

    Progression of auditory discrimination based on neural decoding predicts awakening from coma

    Get PDF
    Auditory evoked potentials are informative of intact cortical functions of comatose patients. The integrity of auditory functions evaluated using mismatch negativity paradigms has been associated with their chances of survival. However, because auditory discrimination is assessed at various delays after coma onset, it is still unclear whether this impairment depends on the time of the recording. We hypothesized that impairment in auditory discrimination capabilities is indicative of coma progression, rather than of the comatose state itself and that rudimentary auditory discrimination remains intact during acute stages of coma. We studied 30 post-anoxic comatose patients resuscitated from cardiac arrest and five healthy, age-matched controls. Using a mismatch negativity paradigm, we performed two electroencephalography recordings with a standard 19-channel clinical montage: the first within 24 h after coma onset and under mild therapeutic hypothermia, and the second after 1 day and under normothermic conditions. We analysed electroencephalography responses based on a multivariate decoding algorithm that automatically quantifies neural discrimination at the single patient level. Results showed high average decoding accuracy in discriminating sounds both for control subjects and comatose patients. Importantly, accurate decoding was largely independent of patients' chance of survival. However, the progression of auditory discrimination between the first and second recordings was informative of a patient's chance of survival. A deterioration of auditory discrimination was observed in all non-survivors (equivalent to 100% positive predictive value for survivors). We show, for the first time, evidence of intact auditory processing even in comatose patients who do not survive and that progression of sound discrimination over time is informative of a patient's chance of survival. Tracking auditory discrimination in comatose patients could provide new insight to the chance of awakening in a quantitative and automatic fashion during early stages of com
    • …
    corecore